login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241885 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n). 10
1, -1, 1, 1, -3, -19, 79, 275, -2339, -11813, 14217, 95265, -4634445, -193814931, 131301607, 1315505395, -3890947599, -136146236611, 46949081169401, 124889801445461, -10635113572583999, -158812278992229461, 56918172351554857, 8484151253958927197 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
For g(n) see A242225(n).
The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024
LINKS
Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.6.7.
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0) = f(0)^(1/m);
g(1) = f(1)/(m*g(0)^(m-1));
g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k >= 2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
E.g.f: sqrt(x/(exp(x)-1)); take numerators. - Peter Luschny, May 08 2014
EXAMPLE
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.
1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.
MAPLE
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> numer(g(bernoulli, n));
seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
MATHEMATICA
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Factor[g[k]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
CROSSREFS
Sequence in context: A027175 A093734 A099421 * A061171 A293561 A240286
KEYWORD
sign,frac
AUTHOR
Jitender Singh, May 01 2014
EXTENSIONS
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 05:18 EDT 2024. Contains 371964 sequences. (Running on oeis4.)