OFFSET
0,5
COMMENTS
For g(n) see A242225(n).
The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024
LINKS
Robert Israel, Table of n, a(n) for n = 0..479
David Broadhurst, Relations between A241885/A242225, A222411/A222412, and A350194/A350154.
Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.6.7.
FORMULA
Theorem: a(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0) = f(0)^(1/m);
g(1) = f(1)/(m*g(0)^(m-1));
g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k >= 2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
E.g.f: sqrt(x/(exp(x)-1)); take numerators. - Peter Luschny, May 08 2014
a(n) = numerator(Sum_{k=0..n} binomial(-1/2,k)*binomial(n+1/2,n-k)*Stirling2(n+k,k)/binomial(n+k,k)). - Tani Akinari, Oct 08 2024
EXAMPLE
MAPLE
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> numer(g(bernoulli, n));
seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
MATHEMATICA
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Factor[g[k]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
PROG
(PARI) a(n)=numerator(sum(k=0, n, binomial(-1/2, k)*binomial(n+1/2, n-k)*stirling(n+k, k, 2)/binomial(n+k, k))) \\ Tani Akinari, Oct 08 2024
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Jitender Singh, May 01 2014
EXTENSIONS
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst
STATUS
approved