login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241885
Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).
10
1, -1, 1, 1, -3, -19, 79, 275, -2339, -11813, 14217, 95265, -4634445, -193814931, 131301607, 1315505395, -3890947599, -136146236611, 46949081169401, 124889801445461, -10635113572583999, -158812278992229461, 56918172351554857, 8484151253958927197
OFFSET
0,5
COMMENTS
For g(n) see A242225(n).
The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024
FORMULA
Theorem: a(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0) = f(0)^(1/m);
g(1) = f(1)/(m*g(0)^(m-1));
g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k >= 2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
E.g.f: sqrt(x/(exp(x)-1)); take numerators. - Peter Luschny, May 08 2014
a(n) = numerator(Sum_{k=0..n} binomial(-1/2,k)*binomial(n+1/2,n-k)*Stirling2(n+k,k)/binomial(n+k,k)). - Tani Akinari, Oct 08 2024
EXAMPLE
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.
1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.
MAPLE
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> numer(g(bernoulli, n));
seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
MATHEMATICA
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Factor[g[k]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
PROG
(PARI) a(n)=numerator(sum(k=0, n, binomial(-1/2, k)*binomial(n+1/2, n-k)*stirling(n+k, k, 2)/binomial(n+k, k))) \\ Tani Akinari, Oct 08 2024
CROSSREFS
Cf. A242225 (denominators), A126156, A242233.
Sequence in context: A027175 A093734 A099421 * A061171 A293561 A240286
KEYWORD
sign,frac
AUTHOR
Jitender Singh, May 01 2014
EXTENSIONS
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst
STATUS
approved