|
|
A241883
|
|
Number of ways 1/n can be expressed as the sum of four distinct unit fractions: 1/n = 1/w + 1/x + 1/y + 1/z satisfying 0 < w < x < y < z.
|
|
8
|
|
|
6, 71, 272, 586, 978, 1591, 1865, 3115, 3772, 4964, 4225, 8433, 4987, 10667, 13659, 10845, 7513, 17360, 9569, 28554, 23309, 17220, 12326, 37554, 19984, 24091, 31056, 42343, 16095, 57001, 15076, 42655, 46885, 38416, 77887, 71959, 16692, 42054, 68894, 95914, 24566, 100023, 24224, 99437, 108756, 41907, 29711, 127069, 52811, 94745, 83433
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
1/1 = 1/2 + 1/3 + 1/7 + 1/42
= 1/2 + 1/3 + 1/8 + 1/24
= 1/2 + 1/3 + 1/9 + 1/18
= 1/2 + 1/3 + 1/10 + 1/15
= 1/2 + 1/4 + 1/5 + 1/20
= 1/2 + 1/4 + 1/6 + 1/12
so a(1) = 6.
|
|
MATHEMATICA
|
a[n_] := Length@ Solve[1/n == 1/w + 1/x + 1/y + 1/z && 0 < w < x < y < z, {w, x, y, z}, Integers]; Array[f, 21]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|