login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241881
Number of ascent sequences of length n with the maximal number of descents.
2
1, 1, 2, 1, 7, 4, 1, 48, 26, 8, 1, 594, 262, 76, 13, 1, 10030, 3571, 933, 169, 19, 1, 205271, 61206, 14351, 2550, 323, 26, 1, 4910802, 1263620, 267378, 45321, 5918, 559, 34, 1, 134636523, 30534920, 5873492, 939681, 121689, 12257, 901, 43, 1, 4166817191
OFFSET
0,3
COMMENTS
a(n*(n+1)/2) = a(A000217(n)) = 1.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..140
FORMULA
a(n) = A238858(n,Re(n-floor((sqrt(8*n-7)+1)/2))).
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(j<i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
end:
a:= n-> (p-> coeff(p, x, degree(p)))(b(n, -1$2)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j<i, x, 1] *b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; a[n_] := Function[{p}, Coefficient[p, x, Exponent[ p, x ]]][b[n, -1, -1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 13 2015, after Maple *)
CROSSREFS
Sequence in context: A011274 A122843 A167196 * A107865 A089225 A185110
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, May 01 2014
STATUS
approved