login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).
10

%I #58 Oct 10 2024 15:30:58

%S 1,-1,1,1,-3,-19,79,275,-2339,-11813,14217,95265,-4634445,-193814931,

%T 131301607,1315505395,-3890947599,-136146236611,46949081169401,

%U 124889801445461,-10635113572583999,-158812278992229461,56918172351554857,8484151253958927197

%N Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).

%C For g(n) see A242225(n).

%C The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".

%C The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - _Peter Luschny_, Feb 18 2024

%H Robert Israel, <a href="/A241885/b241885.txt">Table of n, a(n) for n = 0..479</a>

%H David Broadhurst, <a href="/A241885/a241885.txt">Relations between A241885/A242225, A222411/A222412, and A350194/A350154.</a>

%H Jitender Singh, <a href="http://arxiv.org/abs/1402.0065">On an arithmetic convolution</a>, arXiv:1402.0065 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Singh/singh8.html">J. Int. Seq. 17 (2014) # 14.6.7</a>.

%F Theorem: a(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - _David Broadhurst_, Apr 23 2022 (see Link).

%F For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:

%F g(0) = f(0)^(1/m);

%F g(1) = f(1)/(m*g(0)^(m-1));

%F g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k >= 2.

%F This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.

%F E.g.f: sqrt(x/(exp(x)-1)); take numerators. - _Peter Luschny_, May 08 2014

%F a(n) = numerator(Sum_{k=0..n} binomial(-1/2,k)*binomial(n+1/2,n-k)*Stirling2(n+k,k)/binomial(n+k,k)). - _Tani Akinari_, Oct 08 2024

%e For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.

%e For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.

%e 1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.

%p g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));

%p if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f,m)*g(f,n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:

%p a := n -> numer(g(bernoulli, n));

%p seq(a(n), n = 0..23); # _Peter Luschny_, May 07 2014

%t a := 1

%t g[0] := Sqrt[f[0]]

%t f[k_] := BernoulliB[k]

%t g[1] := f[1]/(2 g[0]^1);

%t g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])

%t Table[Factor[g[k]], {k, 0, 15}] // TableForm

%t (* Alternative: *)

%t Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* _Peter Luschny_, Feb 18 2024 *)

%o (PARI) a(n)=numerator(sum(k=0,n,binomial(-1/2,k)*binomial(n+1/2,n-k)*stirling(n+k,k,2)/binomial(n+k,k))) \\ _Tani Akinari_, Oct 08 2024

%Y Cf. A242225 (denominators), A126156, A242233.

%Y Cf. also A222411/A222412, A350194/A350154.

%Y Cf. A370416/A370417.

%K sign,frac

%O 0,5

%A _Jitender Singh_, May 01 2014

%E Simpler definition from _N. J. A. Sloane_, Apr 24 2022 at the suggestion of _David Broadhurst_