login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373856
a(n) = Sum_{k=1..n} k! * k^(2*n-1) * |Stirling1(n,k)|.
3
0, 1, 17, 1652, 474770, 301474214, 357901156354, 712632435944568, 2204970751341231816, 10017874331177386762512, 63973486554110386836270096, 554598491512901862814742673168, 6344773703149123365957506715989568, 93563015826037060521986513216617599504
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=1} (-log(1 - k^2*x))^k / k.
MATHEMATICA
nmax=13; Range[0, nmax]!CoefficientList[Series[Sum[(-Log[1 - k^2*x])^k / k, {k, nmax}], {x, 0, nmax}], x] (* Stefano Spezia, Jun 19 2024 *)
PROG
(PARI) a(n) = sum(k=1, n, k!*k^(2*n-1)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2024
STATUS
approved