login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351136
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k).
5
1, 1, 33, 4760, 1814698, 1436035954, 2041681617638, 4736066140912728, 16729538152432476024, 85437808930634601070944, 605822464949212598847700512, 5774077466357788471179323050704, 72030066703292325305595937373723040
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k.
a(n) ~ c * r^(2*n) * (1 + r*exp(2/r))^n * n^(3*n + 1/2) / exp(3*n), where r = 0.9414380538633895499299457441124149470954491698433... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-2/r) and c = 2.22047212763474863127102273073825610210704559048894... - Vaclav Kotesovec, Feb 03 2022
MATHEMATICA
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 02 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 02 2022
STATUS
approved