The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351136 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k). 4
 1, 1, 33, 4760, 1814698, 1436035954, 2041681617638, 4736066140912728, 16729538152432476024, 85437808930634601070944, 605822464949212598847700512, 5774077466357788471179323050704, 72030066703292325305595937373723040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..160 FORMULA E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k. a(n) ~ c * r^(2*n) * (1 + r*exp(2/r))^n * n^(3*n + 1/2) / exp(3*n), where r = 0.9414380538633895499299457441124149470954491698433... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-2/r) and c = 2.22047212763474863127102273073825610210704559048894... - Vaclav Kotesovec, Feb 03 2022 MATHEMATICA a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 02 2022 *) PROG (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1)); (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k))) CROSSREFS Cf. A007840, A320096, A351137. Cf. A187755, A351133, A351138. Sequence in context: A350722 A354674 A229260 * A232365 A183551 A114071 Adjacent sequences:  A351133 A351134 A351135 * A351137 A351138 A351139 KEYWORD nonn AUTHOR Seiichi Manyama, Feb 02 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 06:13 EDT 2022. Contains 355108 sequences. (Running on oeis4.)