login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138247
E.g.f.: Sum_{n>=0} exp( (2^n+3^n)*x ) * (2^n+3^n)^n * x^n/n!.
7
1, 7, 223, 49849, 94705663, 1616229320497, 251286598125520183, 357716675257916544062689, 4670472774542449929397808845183, 559006854195449142958954163012808059617, 612171730457531439763516750114999086563829844663, 6118056385739077528636842573416061383741677666682643900049
OFFSET
0,2
COMMENTS
GENERAL BINOMIAL IDENTITY.
When p=2, q=3, this sequence illustrates the following identity:
Sum_{k=0..n} C(n,k)*(p^k + q^k)^n =
Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n
which is a special case of the more general binomial identity:
Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k =
Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.
FORMULA
E.g.f.: Sum_{n>=0} (2^n + 3^n)^n * exp( (2^n + 3^n)*x ) * x^n / n!.
O.g.f.: Sum_{n>=0} (2^n + 3^n)^n * x^n / (1 - (2^n + 3^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} C(n,k)*(2^k + 3^k)^n.
a(n) = Sum_{k=0..n} C(n,k)*(1 + 2^(n-k)*3^k)^n.
a(n) = Sum_{k=0..n} C(n,k)*A007689(k)^n.
a(n) = Sum_{k=0..n} C(n,k)*A094617(n,k)^n.
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Jul 14 2019
EXAMPLE
E.g.f.: A(x) = 1 + 7*x + 223*x^2/2! + 49849*x^3/3! + 94705663*x^4/4! + 1616229320497*x^5/5! + 251286598125520183*x^6/6! + 357716675257916544062689*x^7/7! + 4670472774542449929397808845183*x^8/8! + ...
such that
A(x) = exp(2*x) + (2+3)*exp((2+3)*x)*x + (2^2+3^2)^2*exp(2^2+3^2)*x)*x^2/2! + (2^3+3^3)^3*exp(2^3+3^3)*x)*x^3/3! + (2^4+3^4)^4*exp(2^4+3^4)*x)*x^4/4! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 7*x + 223*x^2 + 49849*x^3 + 94705663*x^4 + 1616229320497*x^5 + 251286598125520183*x^6 + 357716675257916544062689*x^7 + ...
such that
B(x) = 1/(1-2*x) + (2+3)*x/(1 - (2+3)*x)^2 + (2^2+3^2)^2*x^2/(1 - (2^2+3^2)*x)^3 + (2^3+3^3)^3*x^3/(1 - (2^3+3^3)*x)^4 + (2^4+3^4)^4*x^4/(1 - (2^4+3^4)*x)^5 + ...
ILLUSTRATION OF TERMS.
a(1) = 2 + 5 = 3 + 4 = 7 ;
a(2) = 2^2 + 2*5^2 + 13^2 = 5^2 + 2*7^2 + 10^2 = 223 ;
a(3) = 2^3 + 3*5^3 + 3*13^3 + 35^3 = 9^3 + 3*13^3 + 3*19^3 + 28^3 = 49849.
MATHEMATICA
Table[Sum[Binomial[n, k]*(2^k + 3^k)^n, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Jul 14 2019 *)
PROG
(PARI) {a(n)=local(p=2, q=3, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
/* right side of the general binomial identity: */
{a(n)=local(p=2, q=3, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2008, revised Mar 11 2008
STATUS
approved