login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196460
E.g.f.: A(x) = Sum_{n>=0} (1+2^n)^n * exp((1+2^n)*x) * x^n/n!.
4
1, 5, 47, 1193, 113855, 46857665, 83540629607, 629692415941433, 19653639560140008575, 2505063418700072099312705, 1292764583816731772891346438887, 2687238342732260436646020885678131993, 22431974111110989403331425804893720873764255
OFFSET
0,2
COMMENTS
GENERAL BINOMIAL IDENTITY.
When p=1, q=2, this sequence illustrates the following identity.
Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!,
then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n;
which is a special case of the more general binomial identity:
Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.
FORMULA
GENERATING FUNCTIONS.
E.g.f.: Sum_{n>=0} (1 + 2^n)^n * exp( (1 + 2^n)*x ) * x^n / n!.
O.g.f.: Sum_{n>=0} (1 + 2^n)^n * x^n / (1 - (1 + 2^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^k)^n.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jun 25 2013
EXAMPLE
E.g.f.: A(x) = 1 + 5*x + 47*x^2/2! + 1193*x^3/3! + 113855*x^4/4! +...
where
A(x) = exp((1+1)*x) + (1+2)*exp((1+2)*x)*x + (1+2^2)^2*exp((1+2^2)*x)*x^2/2! + (1+2^3)^3*exp((1+2^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 3*exp(3*x)*x + 5^2*exp(5*x)*x^2/2! + 9^3*exp(9*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 33^5*exp(33*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (1+2) = 5 ;
a(2) = (1+1)^2 + 2*(1+2)^2 + (1+2^2)^2 = 2^2 + 2*3^2 + 5^2 = 47 ;
a(3) = (1+1)^3 + 3*(1+2)^3 + 3*(1+2^2)^3 + (1+2^3)^3 = 2^3 + 3*3^3 + 3*5^3 + 9^3 = 1193 ;
a(4) = (1+1)^4 + 4*(1+2)^4 + 6*(1+2^2)^4 + 4*(1+2^3)^4 + (1+2^4)^4 = 2^4 + 4*3^4 + 6*5^4 + 4*9^4 + 17^4 = 113855.
MATHEMATICA
Table[Sum[Binomial[n, k]*(1+2^k)^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 25 2013 *)
PROG
(PARI) {a(n)=local(p=1, q=2); n!*polcoeff(sum(m=0, n, (p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!), n)}
(PARI) {a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
(PARI) /* right side of the general binomial identity: */
{a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
CROSSREFS
Sequence in context: A140422 A145564 A159480 * A093612 A069985 A300336
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 02 2011
STATUS
approved