OFFSET
0,2
COMMENTS
GENERAL BINOMIAL IDENTITY.
When p=1, q=2, this sequence illustrates the following identity.
Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!,
then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n;
which is a special case of the more general binomial identity:
Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.
FORMULA
GENERATING FUNCTIONS.
E.g.f.: Sum_{n>=0} (1 + 2^n)^n * exp( (1 + 2^n)*x ) * x^n / n!.
O.g.f.: Sum_{n>=0} (1 + 2^n)^n * x^n / (1 - (1 + 2^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^k)^n.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jun 25 2013
EXAMPLE
E.g.f.: A(x) = 1 + 5*x + 47*x^2/2! + 1193*x^3/3! + 113855*x^4/4! +...
where
A(x) = exp((1+1)*x) + (1+2)*exp((1+2)*x)*x + (1+2^2)^2*exp((1+2^2)*x)*x^2/2! + (1+2^3)^3*exp((1+2^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 3*exp(3*x)*x + 5^2*exp(5*x)*x^2/2! + 9^3*exp(9*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 33^5*exp(33*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (1+2) = 5 ;
a(2) = (1+1)^2 + 2*(1+2)^2 + (1+2^2)^2 = 2^2 + 2*3^2 + 5^2 = 47 ;
a(3) = (1+1)^3 + 3*(1+2)^3 + 3*(1+2^2)^3 + (1+2^3)^3 = 2^3 + 3*3^3 + 3*5^3 + 9^3 = 1193 ;
a(4) = (1+1)^4 + 4*(1+2)^4 + 6*(1+2^2)^4 + 4*(1+2^3)^4 + (1+2^4)^4 = 2^4 + 4*3^4 + 6*5^4 + 4*9^4 + 17^4 = 113855.
MATHEMATICA
Table[Sum[Binomial[n, k]*(1+2^k)^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 25 2013 *)
PROG
(PARI) {a(n)=local(p=1, q=2); n!*polcoeff(sum(m=0, n, (p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!), n)}
(PARI) {a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
(PARI) /* right side of the general binomial identity: */
{a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 02 2011
STATUS
approved