The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196459 E.g.f.: A(x) = Sum_{n>=0} (2^n + 3^n)^n * exp((5*2^n + 2*3^n)*x) * x^n/n!. 3
 1, 12, 378, 66324, 106198818, 1683766925772, 254853525616593498, 359442643592845468030044, 4678184388343291088594901552738, 559325487076698590861626663741490993292, 612293179823760898820162678475549198446848819338 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence illustrates the following general binomial identity. Given e.g.f.: Sum_{n>=0} exp((s*p^n + t*q^n)*x) * (u*p^n + v*q^n)^n * x^n/n! = Sum_{n>=0} a(n)*x^n/n!, then a(n) = Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k. LINKS FORMULA (1) a(n) = Sum_{k=0..n} C(n,k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k. (2) a(n) = Sum_{k=0..n} C(n,k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k. EXAMPLE E.g.f.: A(x) = 1 + 12*x + 378*x^2/2! + 66324*x^3/3! + 106198818*x^4/4! +... where A(x) = exp((5+2)*x) + (2+3)*exp((5*2+2*3)*x)*x + (2^2+3^2)^2*exp((5*2^2+2*3^2)*x)*x^2/2! + (2^3+3^3)^3*exp((5*2^3+2*3^3)*x)*x^3/3! +... or, equivalently, A(x) = exp(7*x) + 5*exp(16*x)*x + 13^2*exp(38*x)*x^2/2! + 35^3*exp(94*x)*x^3/3! + 97^4*exp(242*x)*x^4/4! + 275^5*exp(646*x)*x^5/5! +... Illustrate formula (1): a(1) = 7 + 5 = 12 ; a(2) = 7^2 + 2*5*16 + 13^2 = 378 ; a(3) = 7^3 + 3*5*16^2 + 3*13^2*38 + 35^3 = 66324 ; a(4) = 7^4 + 4*5*16^3 + 6*13^2*38^2 + 4*35^3*94 + 97^4 = 106198818 ; a(5) = 7^5 + 5*5*16^4 + 10*13^2*38^3 + 10*35^3*94^2 + 5*97^4*242 + 275^5 = 1683766925772; ... Illustrate formula (2): a(1) = 7 + 5 = 12 ; a(2) = 9^2 + 2*11*8 + 14*11^2 = 378 ; a(3) = 13^3 + 3*17^2*14 + 3*23*20^2 + 29^3 = 66324 ; a(4) = 21^4 + 4*29^3*26 + 6*41^2*38^2 + 4*59*56^3 + 83^4 = 106198818 ; a(5) = 37^5 + 5*53^4*50 + 10*77^3*74^2 + 10*113^2*110^3 + 5*167*164^4 + 1*245^5 = 1683766925772; ... PROG (PARI) {a(n)=n!*polcoeff(sum(m=0, n, exp((5*2^m+2*3^m+x*O(x^n))*x)*(2^m+3^m)^m*x^m/m!), n)} (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k)} (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k)} (PARI) {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1); n!*polcoeff(sum(m=0, n, exp((s*p^m+t*q^m+x*O(x^n))*x)*(u*p^m+v*q^m)^m*x^m/m!), n)} (PARI) {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1); sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)} (PARI) /* right side of the general binomial identity: */ {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1); sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)} CROSSREFS Cf. A196460, A138247. Sequence in context: A081021 A269609 A251590 * A193132 A326214 A187513 Adjacent sequences:  A196456 A196457 A196458 * A196460 A196461 A196462 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 12:47 EDT 2021. Contains 346273 sequences. (Running on oeis4.)