The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196459 E.g.f.: A(x) = Sum_{n>=0} (2^n + 3^n)^n * exp((5*2^n + 2*3^n)*x) * x^n/n!. 3

%I

%S 1,12,378,66324,106198818,1683766925772,254853525616593498,

%T 359442643592845468030044,4678184388343291088594901552738,

%U 559325487076698590861626663741490993292,612293179823760898820162678475549198446848819338

%N E.g.f.: A(x) = Sum_{n>=0} (2^n + 3^n)^n * exp((5*2^n + 2*3^n)*x) * x^n/n!.

%C This sequence illustrates the following general binomial identity.

%C Given e.g.f.: Sum_{n>=0} exp((s*p^n + t*q^n)*x) * (u*p^n + v*q^n)^n * x^n/n! = Sum_{n>=0} a(n)*x^n/n!,

%C then a(n) = Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.

%F (1) a(n) = Sum_{k=0..n} C(n,k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k.

%F (2) a(n) = Sum_{k=0..n} C(n,k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k.

%e E.g.f.: A(x) = 1 + 12*x + 378*x^2/2! + 66324*x^3/3! + 106198818*x^4/4! +...

%e where

%e A(x) = exp((5+2)*x) + (2+3)*exp((5*2+2*3)*x)*x + (2^2+3^2)^2*exp((5*2^2+2*3^2)*x)*x^2/2! + (2^3+3^3)^3*exp((5*2^3+2*3^3)*x)*x^3/3! +...

%e or, equivalently,

%e A(x) = exp(7*x) + 5*exp(16*x)*x + 13^2*exp(38*x)*x^2/2! + 35^3*exp(94*x)*x^3/3! + 97^4*exp(242*x)*x^4/4! + 275^5*exp(646*x)*x^5/5! +...

%e Illustrate formula (1):

%e a(1) = 7 + 5 = 12 ;

%e a(2) = 7^2 + 2*5*16 + 13^2 = 378 ;

%e a(3) = 7^3 + 3*5*16^2 + 3*13^2*38 + 35^3 = 66324 ;

%e a(4) = 7^4 + 4*5*16^3 + 6*13^2*38^2 + 4*35^3*94 + 97^4 = 106198818 ;

%e a(5) = 7^5 + 5*5*16^4 + 10*13^2*38^3 + 10*35^3*94^2 + 5*97^4*242 + 275^5 = 1683766925772; ...

%e Illustrate formula (2):

%e a(1) = 7 + 5 = 12 ;

%e a(2) = 9^2 + 2*11*8 + 14*11^2 = 378 ;

%e a(3) = 13^3 + 3*17^2*14 + 3*23*20^2 + 29^3 = 66324 ;

%e a(4) = 21^4 + 4*29^3*26 + 6*41^2*38^2 + 4*59*56^3 + 83^4 = 106198818 ;

%e a(5) = 37^5 + 5*53^4*50 + 10*77^3*74^2 + 10*113^2*110^3 + 5*167*164^4 + 1*245^5 = 1683766925772; ...

%o (PARI) {a(n)=n!*polcoeff(sum(m=0,n,exp((5*2^m+2*3^m+x*O(x^n))*x)*(2^m+3^m)^m*x^m/m!),n)}

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k)}

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k)}

%o (PARI) {a(n)=local(p=2, q=3,s=5,t=2,u=1,v=1);n!*polcoeff(sum(m=0,n,exp((s*p^m+t*q^m+x*O(x^n))*x)*(u*p^m+v*q^m)^m*x^m/m!),n)}

%o (PARI) {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1);

%o sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}

%o (PARI) /* right side of the general binomial identity: */

%o {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1);

%o sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}

%Y Cf. A196460, A138247.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 04 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 17:33 EDT 2021. Contains 347651 sequences. (Running on oeis4.)