login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: A(x) = Sum_{n>=0} exp((2^n + (-1)^n)*x) * (2^n + (-1)^n)^n * x^n/n!.
3

%I #12 Jul 13 2019 23:46:50

%S 1,3,31,729,96895,35927793,81108563671,567783612614529,

%T 19581520178825073535,2420011073132910603900513,

%U 1292280969200128366004695992151,2658679109878459106807828064662797809,22431208469091982323298987880694649428158815,748294346623782293365235855701111498805828889778353

%N E.g.f.: A(x) = Sum_{n>=0} exp((2^n + (-1)^n)*x) * (2^n + (-1)^n)^n * x^n/n!.

%C GENERAL BINOMIAL IDENTITY.

%C When p=-1, q=2, this sequence illustrates the following identity.

%C Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!,

%C then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n;

%C which is a special case of the more general binomial identity:

%C Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.

%F GENERATING FUNCTIONS.

%F E.g.f.: Sum_{n>=0} (2^n + (-1)^n)^n * exp( (2^n + (-1)^n)*x ) * x^n/n!.

%F O.g.f.: Sum_{n>=0} (2^n + (-1)^n)^n * x^n / (1 - (2^n + (-1)^n)*x)^(n+1). - _Paul D. Hanna_, Jul 13 2019

%F FORMULAS FOR TERMS.

%F a(n) = Sum_{k=0..n} C(n,k)*(2^k + (-1)^k)^n.

%e E.g.f.: A(x) = 1 + 3*x + 31*x^2/2! + 729*x^3/3! + 96895*x^4/4! +...

%e where

%e A(x) = exp((1+1)*x) + (2-1)*exp((2-1)*x)*x + (2^2+1)^2*exp((2^2+1)*x)*x^2/2! + (2^3-1)^3*exp((2^3-1)*x)*x^3/3! +...

%e or, equivalently,

%e A(x) = exp(2*x) + 1*exp(1*x)*x + 5^2*exp(5*x)*x^2/2! + 7^3*exp(7*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 31^5*exp(31*x)*x^5/5! +...

%e Illustrate the formula for the terms:

%e a(1) = (1+1) + (2-1) = 3 ;

%e a(2) = (1+1)^2 + 2*(2-1)^2 + (2^2+1)^2 = 2^2 + 2*1^2 + 5^2 = 31 ;

%e a(3) = (1+1)^3 + 3*(2-1)^3 + 3*(2^2+1)^3 + (2^3-1)^3 = 2^3 + 3*1^3 + 3*5^3 + 7^3 = 729 ;

%e a(4) = (1+1)^4 + 4*(2-1)^4 + 6*(2^2+1)^4 + 4*(2^3-1)^4 + (2^4+1)^4 = 2^4 + 4*1^4 + 6*5^4 + 4*7^4 + 17^4 = 96895.

%o (PARI) {a(n)=n!*polcoeff(sum(m=0,n,exp((2^m+(-1)^m+x*O(x^n))*x)*(2^m+(-1)^m)^m*x^m/m!),n)}

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)*(2^k + (-1)^k)^n)}

%o (PARI) {a(n)=local(p=-1, q=2);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}

%o (PARI) {a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1);

%o sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}

%o (PARI) /* right side of the general binomial identity: */

%o {a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1);

%o sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}

%Y Cf. A138247, A196458, A196459, A196460.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 03 2011