login
A049412
Row sums of triangle A049385.
7
1, 7, 85, 1465, 32677, 894103, 28977817, 1085272945, 46112305897, 2191384887175, 115164935076445, 6631403822046697, 415179375712149517, 28079663069162365207, 2040146099677929685345, 158473205735310372796897, 13105410949812720002967889, 1149574078597445578977405319
OFFSET
1,2
COMMENTS
Generalized Bell numbers B(6,1;n).
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(-1+1/(1-5*x)^(1/5))-1.
a(n) = (1/e) * (-5)^n * n! * Sum_{k>=0} binomial(-k/5,n)/k!. - Seiichi Manyama, Jan 17 2025
MATHEMATICA
terms = 16;
Rest[CoefficientList[Exp[-1+1/(1-5x)^(1/5)]-1+O[x]^(terms+1), x]] Range[ terms]! (* Jean-François Alcover, Nov 11 2018 *)
CROSSREFS
Cf. Generalized Bell numbers B(m, 1, n): A049118 (m=3), A049119 (m=4), A049120 (m=5), this sequence (m=6).
Sequence in context: A317353 A302565 A369372 * A346984 A361065 A056547
KEYWORD
nonn
STATUS
approved