The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346984 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(1/5). 10
1, 1, 7, 85, 1495, 34477, 983983, 33476437, 1322441575, 59492222077, 3002578396255, 168005805229285, 10321907081030167, 690761732852321677, 50015387402165694607, 3895721046926471861365, 324805103526730206129607, 28861947117644330678207389, 2722944810091827410698112959 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Stirling transform of A008548.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A008548(k).
a(n) ~ n! / (Gamma(1/5) * 6^(1/5) * n^(4/5) * log(6/5)^(n + 1/5)). - Vaclav Kotesovec, Aug 14 2021
O.g.f. (conjectural): 1/(1 - x/(1 - 6*x/(1 - 6*x/(1 - 12*x/(1 - 11*x/(1 - 18*x/(1 - ... - (5*n-4)*x/(1 - 6*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type. - Peter Bala, Aug 22 2023
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 4*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(6 - 5 Exp[x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
CROSSREFS
Sequence in context: A302565 A369372 A049412 * A361065 A056547 A293055
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 09 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 21:09 EDT 2024. Contains 373487 sequences. (Running on oeis4.)