The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346984 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(1/5). 10
 1, 1, 7, 85, 1495, 34477, 983983, 33476437, 1322441575, 59492222077, 3002578396255, 168005805229285, 10321907081030167, 690761732852321677, 50015387402165694607, 3895721046926471861365, 324805103526730206129607, 28861947117644330678207389, 2722944810091827410698112959 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Stirling transform of A008548. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..351 FORMULA a(n) = Sum_{k=0..n} Stirling2(n,k) * A008548(k). a(n) ~ n! / (Gamma(1/5) * 6^(1/5) * n^(4/5) * log(6/5)^(n + 1/5)). - Vaclav Kotesovec, Aug 14 2021 O.g.f. (conjectural): 1/(1 - x/(1 - 6*x/(1 - 6*x/(1 - 12*x/(1 - 11*x/(1 - 18*x/(1 - ... - (5*n-4)*x/(1 - 6*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type. - Peter Bala, Aug 22 2023 a(0) = 1; a(n) = Sum_{k=1..n} (5 - 4*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023 a(0) = 1; a(n) = a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023 MAPLE g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end: b:= proc(n, m) option remember; `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021 MATHEMATICA nmax = 18; CoefficientList[Series[1/(6 - 5 Exp[x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[StirlingS2[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}] CROSSREFS Cf. A000670, A008548, A094418, A305404, A346982, A346983, A346985, A352117, A352118, A352119. Sequence in context: A302565 A369372 A049412 * A361065 A056547 A293055 Adjacent sequences: A346981 A346982 A346983 * A346985 A346986 A346987 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Aug 09 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 21:09 EDT 2024. Contains 373487 sequences. (Running on oeis4.)