login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049118
Row sums of triangle A035342 and array A134144.
6
1, 4, 25, 211, 2236, 28471, 422899, 7173580, 136750051, 2893057381, 67241818876, 1702829138209, 46659181547785, 1375237342827076, 43380198327693361, 1458027134026128691, 52014149849253158284, 1962794208713975883415
OFFSET
1,2
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2002.
P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
FORMULA
E.g.f. exp(-1+1/sqrt(1-2*x))-1.
Representation of a(n) as n-th moment of a positive function on (0, infinity): a(n)=int(x^n* (x/2)^(-1/2)*exp(-x/2)*(2*hypergeom([], [3/2, 1/2], 1/8*x)/Pi^(1/2)+1/2*sqrt(2)*sqrt(x)*hypergeom([], [2, 3/2], 1/8*x))/(4*exp(1)), x=0..infinity), n=1, 2, ... - Karol A. Penson, Jun 27 2002
Asymptotic expansion for large n: a(n) -> 2^(1/6)*(n^(-1/3) + 2^(-7/3)*n^(-2/3) + O(1/n))*(2*n)^n*exp(-n+(3/2)*(2*n)^(1/3))/(sqrt(3)*exp(1)); (the nature of this approximation of a(n) is the same as that of Stirling approximation of n!). - Karol A. Penson, Sep 02 2002
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A000110, A000262, A049119 and A049120. - Peter Bala, Nov 25 2011
MATHEMATICA
a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j+k-1, k-1]*Binomial[2*n-j-k-1, n-1], {j, 0, n-k}]; a[n_] := Sum[a[n, k], {k, 1, n}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jul 05 2013, after Emanuele Munarini *)
Table[Sum[BellY[n, k, (2 Range[n] - 1)!!], {k, n}], {n, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(Maxima) a(n, k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1, k-1)*binomial(2*n-j-k-1, n-1), j, 0, n-k); makelist(sum(a(n, k), k, 0, n), n, 1, 12); /* Emanuele Munarini, Jun 01 2012 */
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved