login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215094
E.g.f. satisfies A(x) = sinh(x + A(x)^2/2).
1
1, 1, 4, 25, 211, 2296, 30619, 482455, 8768596, 180603511, 4157281129, 105764735440, 2946911156281, 89247262497121, 2919028298593684, 102543779766289705, 3850690682004992491, 153927330069247143976, 6525942204725963508259, 292483420180063453725175
OFFSET
1,3
FORMULA
E.g.f.: A(x) = sinh(G(x)) where G(x) = Series_Reversion(x - sinh(x)^2) is the e.g.f. of A215093.
a(n) ~ 2^(2*n-3/2) * sqrt(1+1/sqrt(5)) * n^(n-1) / (exp(n) * (1-sqrt(5) + 4*arcsinh(sqrt((sqrt(5)-1)/2)))^(n-1/2)). - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 211*x^5/5! + 2296*x^6/6! +...
A(x) = sinh(G(x)) where G(x) is the e.g.f. of A215093:
G(x) = x + x^2/2! + 3*x^3/3! + 19*x^4/4! + 165*x^5/5! +...
where
A(x)^2/2 = x^2/2! + 3*x^3/3! + 19*x^4/4! + 165*x^5/5! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[-x^2/2 + ArcSinh[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(sinh(serreverse(x-sinh(x+x*O(x^n))^2/2)), n)}
(PARI) {a(n)=local(A=x); for(i=0, n, A=x + sinh(A)^2/2); n!*polcoeff(sinh(A), n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A038174 A049118 A305323 * A047733 A351767 A198198
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2012
STATUS
approved