login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215091
Power floor-ceiling sequence of sqrt(5).
5
2, 5, 11, 25, 55, 123, 275, 615, 1375, 3075, 6875, 15373, 34375, 76865, 171875, 384325, 859376, 1921624, 4296881, 9608119, 21484407, 48040595, 107422036, 240202975, 537110180, 1201014874, 2685550900, 6005074370, 13427754501
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power floor-ceiling sequence and the power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p2(r) = 2.20000329748317471983660768168522753590...
LINKS
FORMULA
a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = sqrt(5) and a(0) = floor(x).
EXAMPLE
a(0) = floor(r) = 2, where r = sqrt(5);
a(1) = ceiling(2*r) = 5; a(2) = floor(5*r) = 11.
MATHEMATICA
(See A214999.)
nxt[{n_, a_}]:={n+1, If[OddQ[n], Floor[Sqrt[5]*a], Ceiling[Sqrt[5]*a]]}; Transpose[ NestList[nxt, {0, 2}, 30]][[2]] (* Harvey P. Dale, Oct 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved