OFFSET
0,1
COMMENTS
See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p1(r) = 1.4935514451954997630823098687087959696356...
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..250
FORMULA
a(n) = [x*a(n-1)], where x=sqrt(5), a(0) = [x].
EXAMPLE
a(0) = [r] = 2, where r = sqrt(5); a(1) = [2*r] = 4; a(2) = [4*r] = 8.
MATHEMATICA
x = Sqrt[5]; z = 30; (* z = # terms in sequences *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A214999 *)
Table[p2[n], {n, 0, z}] (* A215091 *)
Table[p3[n], {n, 0, z}] (* A218982 *)
Table[p4[n], {n, 0, z}] (* A218983 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved