login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214999
Power floor sequence of sqrt(5).
5
2, 4, 8, 17, 38, 84, 187, 418, 934, 2088, 4668, 10437, 23337, 52183, 116684, 260913, 583419, 1304564, 2917093, 6522818, 14585464, 32614088, 72927317, 163070438, 364636584, 815352188, 1823182917, 4076760937, 9115914583
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p1(r) = 1.4935514451954997630823098687087959696356...
LINKS
FORMULA
a(n) = [x*a(n-1)], where x=sqrt(5), a(0) = [x].
EXAMPLE
a(0) = [r] = 2, where r = sqrt(5); a(1) = [2*r] = 4; a(2) = [4*r] = 8.
MATHEMATICA
x = Sqrt[5]; z = 30; (* z = # terms in sequences *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A214999 *)
Table[p2[n], {n, 0, z}] (* A215091 *)
Table[p3[n], {n, 0, z}] (* A218982 *)
Table[p4[n], {n, 0, z}] (* A218983 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved