OFFSET
1,1
COMMENTS
a(n) is the greatest integer k for which log k < 1 + 1/2 + ... + 1/n.
a(n) is asymptotically equals to n*e^(gamma) for large values of n where 'gamma' is the Euler-Mascheroni constant(Cf. A001620). - Balarka Sen, Aug 19 2012
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
EXAMPLE
log 2 < 1 < log 3, so a(1) = 2;
log 4 < 1 + 1 + 1/2 < log 5, so a(2) = 4;
log 6 < 1 + 1/2 + 1/3 < log 7, so a(3) = 6.
MATHEMATICA
f[n_] := Sum[1/h, {h, n}]; Table[Floor[E^f[n]], {n, 100}]
Table[Floor[Exp[HarmonicNumber[n]]], {n, 1, 100}] (* G. C. Greubel, Aug 30 2018 *)
PROG
(PARI) a(n) = floor(exp(sum(X=1, n, 1/X))) \\ Balarka Sen, Aug 19 2012
(Magma) [Floor(Exp((&+[1/k :k in [1..n]]))): n in [1..30]]; // G. C. Greubel, Feb 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 18 2012
STATUS
approved