OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2 + sqrt(3), and the limit p3(r) = (23 + 13*sqrt(3))/12.
REFERENCES
R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..250
Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
FORMULA
a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(3) and a(0) = ceiling(x).
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3).
G.f.: (4 + 2*x - x^2)/(1 - 3*x - 3*x^2 + x^3).
a(n) = (-1)^n + 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 14. - Peter Bala, Nov 12 2017
a(n) = (1/12)*(2*(-1)^n + (23-13*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(23+13*sqrt(3))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = ceiling(r) = 4, where r = 2+sqrt(3);
a(1) = floor(4*r) = 14; a(2) = ceiling(14*r) = 53.
MATHEMATICA
x = 2 + Sqrt[3]; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A001835 *)
Table[p2[n], {n, 0, z}] (* A109437 *)
Table[p3[n], {n, 0, z}] (* A214998 *)
Table[p4[n], {n, 0, z}] (* A001353 *)
PROG
(PARI) Vec((4 + 2*x - x^2) / ((1 + x)*(1 - 4*x + x^2)) + O(x^30)) \\ Colin Barker, Nov 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved