login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214998
Power ceiling-floor sequence of 2 + sqrt(3).
2
4, 14, 53, 197, 736, 2746, 10249, 38249, 142748, 532742, 1988221, 7420141, 27692344, 103349234, 385704593, 1439469137, 5372171956, 20049218686, 74824702789, 279249592469, 1042173667088, 3889445075882, 14515606636441, 54172981469881, 202176319243084
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2 + sqrt(3), and the limit p3(r) = (23 + 13*sqrt(3))/12.
REFERENCES
R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
FORMULA
a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(3) and a(0) = ceiling(x).
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3).
G.f.: (4 + 2*x - x^2)/(1 - 3*x - 3*x^2 + x^3).
a(n) = (-1)^n + 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 14. - Peter Bala, Nov 12 2017
a(n) = (1/12)*(2*(-1)^n + (23-13*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(23+13*sqrt(3))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = ceiling(r) = 4, where r = 2+sqrt(3);
a(1) = floor(4*r) = 14; a(2) = ceiling(14*r) = 53.
MATHEMATICA
x = 2 + Sqrt[3]; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A001835 *)
Table[p2[n], {n, 0, z}] (* A109437 *)
Table[p3[n], {n, 0, z}] (* A214998 *)
Table[p4[n], {n, 0, z}] (* A001353 *)
PROG
(PARI) Vec((4 + 2*x - x^2) / ((1 + x)*(1 - 4*x + x^2)) + O(x^30)) \\ Colin Barker, Nov 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved