login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308555
Expansion of e.g.f. Sum_{k>=1} sigma(k)*(exp(x) - 1)^k/k!, where sigma = sum of divisors (A000203).
3
1, 4, 14, 53, 222, 1011, 4944, 25884, 144963, 865556, 5477661, 36518635, 255323564, 1867122987, 14259709474, 113593734317, 942317654779, 8123227487723, 72599829900774, 671199117610868, 6407156027307909, 63061416571124056, 639303956718643041, 6670690645674913424
OFFSET
1,2
COMMENTS
Stirling transform of A000203.
LINKS
FORMULA
G.f.: Sum_{k>=1} sigma(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*sigma(k).
MAPLE
b:= proc(n, m) option remember; uses numtheory;
`if`(n=0, sigma(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Aug 03 2021
MATHEMATICA
nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[StirlingS2[n, k] DivisorSigma[1, k], {k, 1, n}], {n, 1, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 07 2019
STATUS
approved