login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308554
Expansion of e.g.f. Sum_{k>=1} tau(k)*(exp(x) - 1)^k/k!, where tau = number of divisors (A000005).
3
1, 3, 9, 30, 113, 472, 2145, 10514, 55428, 313255, 1886888, 12029741, 80701715, 567541878, 4175795147, 32104799401, 257561662496, 2151841672173, 18676002357864, 167951667633495, 1561420657033927, 14980472336450530, 148140814019762129, 1508776236781766431
OFFSET
1,2
COMMENTS
Stirling transform of A000005.
LINKS
FORMULA
G.f.: Sum_{k>=1} tau(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*tau(k).
MAPLE
b:= proc(n, m) option remember; uses numtheory;
`if`(n=0, tau(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Aug 04 2021
MATHEMATICA
nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[StirlingS2[n, k] DivisorSigma[0, k], {k, 1, n}], {n, 1, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 07 2019
STATUS
approved