OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..575
FORMULA
a(n) = Sum(k*binomial(n-1,k-1)*B(n-k), k=1..n) = Sum(k*A056857(n,k), k=1..n), where B(q) are the Bell numbers (A000110).
a(n) = (n-1)*B(n-1)+B(n). - Vladeta Jovovic, Nov 10 2006
a(n) ~ Bell(n) * (LambertW(n) + 1). - Vaclav Kotesovec, Jul 28 2021
EXAMPLE
a(3)=9 because the 5 (=A000110(3)) set partitions of {1,2,3} are 123, 12|3, 13|2, 1|23 and 1|2|3 and 3+2+2+1+1=9.
MAPLE
with(combinat): seq(add(k*binomial(n-1, k-1)*bell(n-k), k=1..n), n=0..30);
MATHEMATICA
Table[Sum[Binomial[n-1, k-1] * BellB[n-k] * k, {k, 1, n}], {n, 0, 22}] (* Geoffrey Critzer, Jun 14 2013 *)
Flatten[{0, Table[(n-1)*BellB[n-1] + BellB[n], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 19 2016, after Vladeta Jovovic *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 10 2006
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Mar 17 2016
STATUS
approved