login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124424
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting of entries of the same parity (0<=k<=n).
4
1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 3, 4, 5, 2, 1, 7, 14, 16, 10, 4, 1, 25, 48, 61, 42, 20, 6, 1, 79, 194, 250, 200, 106, 38, 9, 1, 339, 820, 1145, 958, 569, 230, 66, 12, 1, 1351, 3794, 5554, 5096, 3251, 1486, 486, 112, 16, 1, 6721, 18960, 29101, 28010, 19110, 9470, 3477, 930, 175, 20, 1
OFFSET
0,8
COMMENTS
Row sums are the Bell numbers (A000110). T(n,0)=A124425(n).
LINKS
FORMULA
The generating polynomial of row n is P[n](t)=Q[n](t,t,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
Sum_{k=0..n} k * T(n,k) = A363434(n). - Alois P. Heinz, Jun 01 2023
EXAMPLE
T(4,2) = 5 because we have 13|24, 14|2|3, 1|2|34, 1|23|4 and 12|3|4.
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 2, 1, 1;
3, 4, 5, 2, 1;
7, 14, 16, 10, 4, 1;
...
MAPLE
Q[0]:=1: for n from 1 to 11 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 11 do P[n]:=sort(subs({s=t, x=1}, Q[n])) od: for n from 0 to 11 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(g, u) option remember;
add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..min(g, u))
end:
T:= proc(n, k) local g, u; g:= floor(n/2); u:= ceil(n/2);
add(add(add(binomial(g, i)*Stirling2(i, h)*binomial(u, j)*
Stirling2(j, k-h)*b(g-i, u-j), j=k-h..u), i=h..g), h=0..k)
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Oct 24 2013
MATHEMATICA
b[g_, u_] := b[g, u] = Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, Min[g, u]}] ; T[n_, k_] := Module[{g, u}, g = Floor[n/2]; u = Ceiling[n/2]; Sum[ Sum[ Sum[ Binomial[g, i]*StirlingS2[i, h]*Binomial[u, j]*StirlingS2[j, k-h]*b[g-i, u-j], {j, k-h, u}], {i, h, g}], {h, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Nov 01 2006
STATUS
approved