OFFSET
0,5
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/12) * eta(q^2)^2 * eta(q^5) * eta(q^12)^2 * eta(q^30)^2 / (eta(q) * eta(q^4)^2 * eta(q^6) * eta(q^10)^2 * eta(q^60)) in powers of q.
Euler transform of a period 60 sequence.
a(n) = A139632(3*n).
a(n) ~ exp(Pi*sqrt(3*n/10)) / (2^(5/4) * 3^(3/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 + x + x^3 + 2*x^4 + x^5 + x^6 + 3*x^7 + 4*x^8 + 4*x^9 + ...
G.f. = q^-1 + q^11 + q^35 + 2*q^47 + q^59 + q^71 + 3*q^83 + 4*q^95 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-1/8) QPochhammer[ -x, x^2] EllipticTheta[ 2, 0, x^3] EllipticTheta[ 4, 0, x^30] / (QPochhammer[ x^4] EllipticTheta[ 2, 0, x^(5/2)]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^12 + A)^2 * eta(x^30 + A)^2 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^10 + A)^2 * eta(x^60 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 13 2015
STATUS
approved