login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262175
Expansion of chi(x) * psi(x^6) * phi(-x^30) / (f(-x^4) * psi(x^5)) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
1
1, 1, 0, 1, 2, 1, 1, 3, 4, 4, 4, 6, 8, 8, 8, 11, 16, 17, 17, 23, 31, 32, 32, 42, 54, 56, 59, 77, 94, 99, 106, 129, 156, 167, 178, 214, 257, 276, 295, 350, 416, 445, 474, 559, 652, 698, 752, 877, 1012, 1089, 1174, 1349, 1542, 1662, 1792, 2042, 2327, 2512, 2706
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/12) * eta(q^2)^2 * eta(q^5) * eta(q^12)^2 * eta(q^30)^2 / (eta(q) * eta(q^4)^2 * eta(q^6) * eta(q^10)^2 * eta(q^60)) in powers of q.
Euler transform of a period 60 sequence.
a(n) = A139632(3*n).
a(n) ~ exp(Pi*sqrt(3*n/10)) / (2^(5/4) * 3^(3/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 + x + x^3 + 2*x^4 + x^5 + x^6 + 3*x^7 + 4*x^8 + 4*x^9 + ...
G.f. = q^-1 + q^11 + q^35 + 2*q^47 + q^59 + q^71 + 3*q^83 + 4*q^95 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-1/8) QPochhammer[ -x, x^2] EllipticTheta[ 2, 0, x^3] EllipticTheta[ 4, 0, x^30] / (QPochhammer[ x^4] EllipticTheta[ 2, 0, x^(5/2)]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^12 + A)^2 * eta(x^30 + A)^2 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^10 + A)^2 * eta(x^60 + A)), n))};
CROSSREFS
Cf. A139632.
Sequence in context: A302097 A307277 A210691 * A278028 A124424 A057044
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 13 2015
STATUS
approved