login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262178
Decimal expansion of Sum_{k>=0} (-1)^k/(3*k+1)^2.
2
9, 5, 1, 5, 1, 7, 7, 1, 3, 4, 1, 6, 4, 1, 5, 0, 4, 1, 8, 6, 6, 4, 8, 2, 8, 3, 1, 4, 7, 2, 7, 4, 1, 5, 3, 1, 5, 4, 4, 7, 2, 8, 5, 0, 8, 2, 3, 2, 6, 9, 7, 0, 5, 1, 3, 3, 0, 0, 3, 2, 4, 3, 1, 5, 2, 9, 6, 1, 1, 3, 4, 3, 0, 2, 2, 7, 5, 8, 3, 0, 2, 1, 9, 9, 3, 4, 7, 4, 8, 9, 3, 7
OFFSET
0,1
COMMENTS
Also, decimal expansion of Sum_{h>=0} Sum_{j=0..h} (-1)^j*binomial(h, j)/(4*(1 + h)*(1 + 6*j)*(2 + 3*j)).
LINKS
FORMULA
Equals (zeta(2, 1/6) - zeta(2, 2/3))/36, where zeta(s,a) is the Hurwitz zeta function.
EXAMPLE
1 - 1/16 + 1/49 - 1/100 + 1/169 - 1/256 + 1/361 - 1/484 + ...
0.9515177134164150418664828314727415315447285082326970513300324315296113...
MATHEMATICA
RealDigits[(Zeta[2, 1/6] - Zeta[2, 2/3])/36, 10, 100][[1]]
PROG
(PARI) sumalt(k=0, (-1)^k/(3*k+1)^2) \\ Michel Marcus, Sep 14 2015
(PARI) zetahurwitz(2, 1/6)/36 - zetahurwitz(2, 2/3)/36 \\ Charles R Greathouse IV, Jan 31 2018
CROSSREFS
Cf. A006752.
Cf. A113476: Sum_{k>=0} (-1)^k/(3*k+1).
Cf. A226735: Sum_{k>=0} (-1)^k/(3*k+1)^3.
Sequence in context: A256191 A019982 A198421 * A154483 A198560 A078887
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Sep 14 2015
STATUS
approved