login
A262176
Numbers n where n-17, n-1, n+1 and n+17 are consecutive primes.
1
3390, 66570, 70140, 84810, 132330, 136710, 222840, 225750, 242730, 271770, 288930, 320010, 330330, 377370, 390390, 414330, 463890, 489960, 505710, 644670, 758340, 819390, 830310, 857010, 895650, 906540, 908910, 924810, 952380, 968520, 974820
OFFSET
1,1
COMMENTS
This is a subsequence of A014574 (average of twin prime pairs), A256753 and A249674 (30n).
LINKS
Eric Weisstein's World of Mathematics, Twin Primes
EXAMPLE
3390 is the average of the four consecutive primes 3373, 3389, 3391, 3407.
66570 is the average of the four consecutive primes 66553, 66569, 66571, 66587.
MATHEMATICA
Select[Prime@ Range@ 50000, NextPrime[#, {1, 2, 3}] == {16, 18, 34} + # &] + 17 (* Giovanni Resta, Sep 14 2015 *)
PROG
(Python)
from sympy import isprime, prevprime, nextprime
for i in range(0, 3000001, 6):
..if isprime(i-1) and isprime(i+1) and prevprime(i-1)==i-17 and nextprime(i+1)==i+17 : print (i, end=', ')
(PARI) list(l)=for(i=1, l, p=prime(i); if(p+16==prime(i+1)&&p+18==prime(i+2)&&p+34==prime(i+3), print1(p+17, ", "))) \\ Anders Hellström, Sep 14 2015
(Perl) use ntheory ":all"; say $_+1 for grep { next_prime($_+2)-$_ == 18 && $_-prev_prime($_) == 16} @{twin_primes(1e9)}; # Dana Jacobsen, Oct 13 2015
(Perl) use ntheory ":all"; say $_+17 for grep { next_prime($_+0)-$_ == 16 && next_prime($_+18)-$_ == 34} sieve_prime_cluster(1, 1e9, 16, 18, 34); # Dana Jacobsen, Oct 13 2015
CROSSREFS
Cf. A014574, A077800 (twin primes), A249674, A256753.
Sequence in context: A031611 A133966 A043671 * A172788 A185573 A185926
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Sep 13 2015
STATUS
approved