login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372760
2nd row of the 3-Zeckendorf array (A136189), including prepended terms.
5
0, 2, 1, 1, 3, 4, 5, 8, 12, 17, 25, 37, 54, 79, 116, 170, 249, 365, 535, 784, 1149, 1684, 2468, 3617, 5301, 7769, 11386, 16687, 24456, 35842, 52529, 76985, 112827, 165356, 242341, 355168, 520524, 762865, 1118033, 1638557, 2401422, 3519455, 5158012, 7559434
OFFSET
-5,2
COMMENTS
The 3-Zeckendorf array (A136189) is based on the Narayana (Narayana's cow sequence A000930) weighted representation of n (see A350215).
LINKS
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly 33 (1995) 3-8.
FORMULA
a(n) = A179070(n+5) for n >= -3. - Pontus von Brömssen, May 13 2024
MATHEMATICA
LinearRecurrence[{1, 0, 1}, {0, 2, 1}, 50] (* Paolo Xausa, May 25 2024 *)
CROSSREFS
The k-th row: A000930(n+2) (k=1), this sequence (k=2).
The k-th column: A020942 (k=1), A064105 (k=2), A064106 (k=3), A372749 (k=4), A372750 (k=5), A372752 (k=6), A372756 (k=7), A372757 (k=8).
The k-th prepended column: A005374 (k=1), A136495 (k=2), A023443 (k=3), A202342 (k=4), A372758 (k=5), A372759 (k=6).
Sequence in context: A278028 A124424 A057044 * A153899 A068098 A135722
KEYWORD
nonn,easy
AUTHOR
A.H.M. Smeets, May 12 2024
STATUS
approved