login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124421
Number of partitions of the set {1,2,...,n} having no blocks that contain only odd entries.
10
1, 0, 1, 1, 5, 9, 52, 130, 855, 2707, 19921, 75771, 614866, 2717570, 24040451, 120652827, 1152972925, 6460552857, 66200911138, 408845736040, 4465023867757, 30083964854141, 348383154017581, 2539795748336375, 31052765897026352, 243282175672281360
OFFSET
0,5
COMMENTS
Column 0 of A124420.
LINKS
FORMULA
a(n) = Q[n](0,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..floor(n/2)} Stirling2(floor(n/2),j) * j^ceiling(n/2). - Alois P. Heinz, Oct 23 2013
EXAMPLE
a(4) = 5 because we have 1234, 134|2, 14|23, 12|34 and 123|4.
MAPLE
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=0, s=1, x=1}, Q[n]), n=0..27);
# second Maple program:
a:= n-> add(Stirling2(floor(n/2), j)*j^ceil(n/2), j=0..floor(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
a[0] = 1; a[n_] := Sum[StirlingS2[Floor[n/2], j]*j^Ceiling[n/2], {j, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
CROSSREFS
Bisection gives A108459 (even part).
Sequence in context: A000324 A123817 A369155 * A262918 A283918 A284382
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved