OFFSET
0,5
COMMENTS
Column 0 of A124420.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
FORMULA
a(n) = Q[n](0,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..floor(n/2)} Stirling2(floor(n/2),j) * j^ceiling(n/2). - Alois P. Heinz, Oct 23 2013
EXAMPLE
a(4) = 5 because we have 1234, 134|2, 14|23, 12|34 and 123|4.
MAPLE
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1], t)+x*diff(Q[n-1], s)+x*diff(Q[n-1], x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1], t)+s*diff(Q[n-1], s)+x*diff(Q[n-1], x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=0, s=1, x=1}, Q[n]), n=0..27);
# second Maple program:
a:= n-> add(Stirling2(floor(n/2), j)*j^ceil(n/2), j=0..floor(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
MATHEMATICA
a[0] = 1; a[n_] := Sum[StirlingS2[Floor[n/2], j]*j^Ceiling[n/2], {j, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 31 2006
STATUS
approved