|
|
A283918
|
|
a(n) = (1 + Sum_{j=1..K-2} a(n-j)*a(n-j-1))/a(n-K) with a(1),...,a(K)=1, where K=6.
|
|
2
|
|
|
1, 1, 1, 1, 1, 1, 5, 9, 53, 529, 28565, 15139445, 86494677165, 145497982245073197, 237449075542565847670095797, 65308811677507188262439443927593494833685, 542885242695872953856134304668084060854561472461643166998594129
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,7
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..23
|
|
MATHEMATICA
|
a[n_]:= If[n<7, 1, (1 + Sum[a[n - j] * a[n -j - 1], {j, 4}])/a[ n - 6]]; Table[a[n], {n, 23}] (* Indranil Ghosh, Mar 18 2017 *)
|
|
PROG
|
(PARI) a(n) = if(n<7, 1, (1 + sum(j=1, 4, a(n - j) * a(n - j - 1)))/a(n - 6));
for(n=1, 24, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017
|
|
CROSSREFS
|
Cf. A077458 (K=4), A283819 (K=5), this sequence (K=6), A283820 (K=7), A283920 (K=8), A283821 (K=9).
Sequence in context: A123817 A124421 A262918 * A284382 A143554 A222536
Adjacent sequences: A283915 A283916 A283917 * A283919 A283920 A283921
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Mar 17 2017
|
|
STATUS
|
approved
|
|
|
|