The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143554 G.f. satisfies: A(x) = 1 + x*A(x)^5*A(-x)^4. 19
 1, 1, 1, 5, 9, 55, 117, 775, 1785, 12350, 29799, 211876, 527085, 3818430, 9706503, 71282640, 184138713, 1366368375, 3573805950, 26735839650, 70625252863, 531838637759, 1416298046436, 10723307329700, 28748759731965, 218658647805780, 589546754316126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of achiral noncrossing partitions composed of n blocks of size 9. - Andrew Howroyd, Feb 08 2024 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..500 Michel Bousquet and Cédric Lamathe, On symmetric structures of order two, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176. See Table 1. - From N. J. A. Sloane, Jul 12 2011 FORMULA G.f. satisfies: A(x) = [A(x)*A(-x)] + x*[A(x)*A(-x)]^5. G.f. satisfies: A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2) where G(x) = 1 + x*G(x)^9 is the g.f. of A062994. a(2n) = binomial(9*n,n)/(8*n+1); a(2n+1) = binomial(9*n+4,n)*5/(8*n+5). EXAMPLE G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 9*x^4 + 55*x^5 + 117*x^6 + 775*x^7 +... Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then G(x^2) = A(x)*A(-x) and A(x) = G(x^2) + x*G(x^2)^5 where G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +... G(x)^5 = 1 + 5*x + 55*x^2 + 775*x^3 + 12350*x^4 + 211876*x^5 +... MATHEMATICA terms = 25; A[_] = 1; Do[A[x_] = 1 + x A[x]^5 A[-x]^4 + O[x]^terms // Normal, {terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *) PROG (PARI) {a(n)=my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^5*subst(A^4, x, -x)); polcoef(A, n)} (PARI) {a(n)=my(m=n\2, p=4*(n%2)+1); binomial(9*m+p-1, m)*p/(8*m+p)} CROSSREFS Column k=9 of A369929 and k=10 of A370062. Cf. A143338, A143546, A143547, A143550, A143551, A143552, A143553, A062994 (bisection). Sequence in context: A262918 A283918 A284382 * A222536 A222698 A200440 Adjacent sequences: A143551 A143552 A143553 * A143555 A143556 A143557 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 19:52 EDT 2024. Contains 373360 sequences. (Running on oeis4.)