login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143554
G.f. satisfies: A(x) = 1 + x*A(x)^5*A(-x)^4.
19
1, 1, 1, 5, 9, 55, 117, 775, 1785, 12350, 29799, 211876, 527085, 3818430, 9706503, 71282640, 184138713, 1366368375, 3573805950, 26735839650, 70625252863, 531838637759, 1416298046436, 10723307329700, 28748759731965, 218658647805780, 589546754316126
OFFSET
0,4
COMMENTS
Number of achiral noncrossing partitions composed of n blocks of size 9. - Andrew Howroyd, Feb 08 2024
LINKS
Michel Bousquet and Cédric Lamathe, On symmetric structures of order two, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176. See Table 1. - From N. J. A. Sloane, Jul 12 2011
FORMULA
G.f. satisfies: A(x) = [A(x)*A(-x)] + x*[A(x)*A(-x)]^5.
G.f. satisfies: A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2) where G(x) = 1 + x*G(x)^9 is the g.f. of A062994.
a(2n) = binomial(9*n,n)/(8*n+1); a(2n+1) = binomial(9*n+4,n)*5/(8*n+5).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 9*x^4 + 55*x^5 + 117*x^6 + 775*x^7 +...
Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then
G(x^2) = A(x)*A(-x) and A(x) = G(x^2) + x*G(x^2)^5 where
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
G(x)^5 = 1 + 5*x + 55*x^2 + 775*x^3 + 12350*x^4 + 211876*x^5 +...
MATHEMATICA
terms = 25;
A[_] = 1; Do[A[x_] = 1 + x A[x]^5 A[-x]^4 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
PROG
(PARI) {a(n)=my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^5*subst(A^4, x, -x)); polcoef(A, n)}
(PARI) {a(n)=my(m=n\2, p=4*(n%2)+1); binomial(9*m+p-1, m)*p/(8*m+p)}
CROSSREFS
Column k=9 of A369929 and k=10 of A370062.
Sequence in context: A262918 A283918 A284382 * A222536 A222698 A200440
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2008
STATUS
approved