login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143552
G.f. satisfies: A(x) = 1 + x*A(x)^5*A(-x)^2.
5
1, 1, 3, 22, 115, 1048, 6418, 63784, 421195, 4386273, 30271136, 324599018, 2306033386, 25228297188, 182938978344, 2030788315648, 14952369357211, 167836915812087, 1250429798513035, 14158770843121424, 106483223789898776
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^7.
EXAMPLE
G.f. A(x) = 1 + x + 3*x^2 + 22*x^3 + 115*x^4 + 1048*x^5 + 6418*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 25*x^2 + 180*x^3 + 1200*x^4 + 9851*x^5 + 73195*x^6 +...
A(-x)^2 = 1 - 2*x + 7*x^2 - 50*x^3 + 283*x^4 - 2458*x^5 + 16106*x^6 -+...
A(x)*A(-x) = 1 + 5*x^2 + 195*x^4 + 10946*x^6 + 720443*x^8 +...
[A(x)*A(-x)]^7 = 1 + 35*x^2 + 1890*x^4 + 121947*x^6 + 8674036*x^8 +...
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^5*subst(A^2, x, -x)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2008
STATUS
approved