login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100511
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n,j)*binomial(n,k)*max(j,k).
3
0, 3, 22, 126, 652, 3190, 15060, 69356, 313624, 1398438, 6166660, 26948548, 116888232, 503811516, 2159864392, 9216445080, 39168381488, 165864540934, 700151508324, 2947120122068, 12373581565960, 51831196048212, 216659135089496, 903925011410536
OFFSET
0,2
LINKS
M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
FORMULA
a(n) = n*2^(2*n-1) + (n/2)*binomial(2*n, n). [Typo corrected by Ognjen Dragoljevic, Dec 26 2017]
From G. C. Greubel, Apr 01 2023: (Start)
G.f.: x*(2 + sqrt(1-4*x))/(1-4*x)^2.
E.g.f.: x*(2*exp(4*x)+ exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x))). (End)
MATHEMATICA
Table[n*(4^n +(n+1)*CatalanNumber[n])/2, {n, 0, 40}] (* G. C. Greubel, Apr 01 2023 *)
PROG
(PARI) a(n) = n*2^(2*n-1) + (n/2)*binomial(2*n, n); \\ Michel Marcus, Dec 26 2017
(Magma) [n*(4^n +(n+1)*Catalan(n))/2: n in [0..40]]; // G. C. Greubel, Apr 01 2023
(SageMath) [n*(4^n +binomial(2*n, n))/2 for n in range(41)] # G. C. Greubel, Apr 01 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 24 2004
STATUS
approved