Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 03 2023 14:31:52
%S 0,3,22,126,652,3190,15060,69356,313624,1398438,6166660,26948548,
%T 116888232,503811516,2159864392,9216445080,39168381488,165864540934,
%U 700151508324,2947120122068,12373581565960,51831196048212,216659135089496,903925011410536
%N a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n,j)*binomial(n,k)*max(j,k).
%H G. C. Greubel, <a href="/A100511/b100511.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Klamkin, ed., <a href="https://doi.org/10.1137/1.9781611971729">Problems in Applied Mathematics: Selections from SIAM Review</a>, SIAM, 1990; see pp. 127-129.
%F a(n) = n*2^(2*n-1) + (n/2)*binomial(2*n, n). [Typo corrected by _Ognjen Dragoljevic_, Dec 26 2017]
%F From _G. C. Greubel_, Apr 01 2023: (Start)
%F G.f.: x*(2 + sqrt(1-4*x))/(1-4*x)^2.
%F E.g.f.: x*(2*exp(4*x)+ exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x))). (End)
%t Table[n*(4^n +(n+1)*CatalanNumber[n])/2, {n,0,40}] (* _G. C. Greubel_, Apr 01 2023 *)
%o (PARI) a(n) = n*2^(2*n-1) + (n/2)*binomial(2*n, n); \\ _Michel Marcus_, Dec 26 2017
%o (Magma) [n*(4^n +(n+1)*Catalan(n))/2: n in [0..40]]; // _G. C. Greubel_, Apr 01 2023
%o (SageMath) [n*(4^n +binomial(2*n,n))/2 for n in range(41)] # _G. C. Greubel_, Apr 01 2023
%Y Cf. A000108, A002457, A033504.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Nov 24 2004