OFFSET
0,2
REFERENCES
M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..765
FORMULA
a(n) = numerator( Sum_{k=0..n} 1/C(3*n, 3*k) ).
a(n) = numerator( (3*n+1)*Sum_{k=0..n} beta(3*k+1, 3*(n-k)+1) ). - G. C. Greubel, Mar 28 2023
EXAMPLE
Sum_{k=0..n} 1/C(3*n, 3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = a(n)/A100515(n).
MATHEMATICA
Table[Numerator[(3*n+1)*Sum[Beta[3k+1, 3n-3k+1], {k, 0, n}]], {n, 0, 40}] (* G. C. Greubel, Mar 28 2023 *)
PROG
(Magma) [Numerator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
(SageMath)
def A100514(n): return numerator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1)))
[A100514(n) for n in range(40)] # G. C. Greubel, Mar 28 2023
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 25 2004
STATUS
approved