login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100514
Numerator of Sum_{k=0..n} 1/C(3*n, 3*k).
4
1, 2, 41, 85, 9287, 10034, 4089347, 3529889, 119042647, 191288533, 1553111566613, 471993968921, 48141284433673, 287285900609, 24342145990117741, 68262703949495173, 490305954062679017, 2207402771385797549, 995490830339080453219, 188798823808438240073
OFFSET
0,2
REFERENCES
M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.
LINKS
FORMULA
a(n) = numerator( Sum_{k=0..n} 1/C(3*n, 3*k) ).
a(n) = numerator( (3*n+1)*Sum_{k=0..n} beta(3*k+1, 3*(n-k)+1) ). - G. C. Greubel, Mar 28 2023
EXAMPLE
Sum_{k=0..n} 1/C(3*n, 3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = a(n)/A100515(n).
MATHEMATICA
Table[Numerator[(3*n+1)*Sum[Beta[3k+1, 3n-3k+1], {k, 0, n}]], {n, 0, 40}] (* G. C. Greubel, Mar 28 2023 *)
PROG
(Magma) [Numerator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
(SageMath)
def A100514(n): return numerator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1)))
[A100514(n) for n in range(40)] # G. C. Greubel, Mar 28 2023
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 25 2004
STATUS
approved