login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100517
Denominator of Sum_{k=0..n} 1/binomial(n,k)^2.
5
1, 1, 4, 9, 72, 10, 3600, 1575, 2800, 1764, 14112, 13475, 34927200, 2316600, 192192, 4459455, 4994589600, 262061800, 735869534400, 17476901442, 422721728, 353723760, 31127690880, 10150725585, 59637542956992, 2205530434800, 155748568976000, 50956005028500
OFFSET
0,3
REFERENCES
H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).
LINKS
FORMULA
a(n) = denominator( 3*(n+1)^2/((n+2)*(2*n+3)*Catalan(n+1)) * Sum_{k=1..n+1} binomial(2*k, k)/k ). - G. C. Greubel, Jun 24 2022
EXAMPLE
1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
MATHEMATICA
Table[Sum[1/Binomial[n, k]^2, {k, 0, n}], {n, 0, 30}]//Denominator (* Harvey P. Dale, Apr 01 2019 *)
PROG
(Magma) [Denominator( (&+[1/Binomial[n, k]^2: k in [0..n]]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
(SageMath) [denominator(sum(1/binomial(n, k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
(PARI) a(n) = denominator(sum(k=0, n, 1/binomial(n, k)^2)); \\ Michel Marcus, Jun 24 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 25 2004
STATUS
approved