login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100520
Numerator of Sum_{k=0..2*n} (-1)^k/binomial(2*n, k)^2.
3
1, 7, 137, 2341, 38629, 1257937, 50881679, 164078209, 18480100619, 1187779852639, 4086043585673, 46823724627623, 825926870076593, 8826243587390221, 6435629123661395137, 721766119107018403553, 5255377541226932317019, 19239461977895120106181, 2618947765106118753941303
OFFSET
0,2
LINKS
FORMULA
a(n) = numerator( Sum_{k=0..2*n} (-1)^k/binomial(2*n,k)^2 ).
EXAMPLE
1, 7/4, 137/72, 2341/1200, 38629/19600, 1257937/635040, 50881679/25613280, 164078209/82450368, 18480100619/9275666400, 1187779852639/595703908800, ... = A100520/A100521
MATHEMATICA
Table[Numerator[Sum[(-1)^k/Binomial[2*n, k]^2, {k, 0, 2*n}]], {n, 0, 30}] (* G. C. Greubel, Jun 24 2022 *)
PROG
(Magma) [Numerator( (&+[(-1)^k/Binomial(2*n, k)^2: k in [0..2*n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
(SageMath) [numerator(sum((-1)^k/binomial(2*n, k)^2 for k in (0..2*n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
(PARI) a(n) = numerator(sum(k=0, 2*n, (-1)^k/binomial(2*n, k)^2)); \\ Michel Marcus, Jun 25 2022
CROSSREFS
Sequence in context: A220380 A051504 A058881 * A221342 A221298 A009701
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 25 2004
EXTENSIONS
Definition corrected by Alexander Adamchuk, May 11 2007
STATUS
approved