login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100518
Numerator of Sum_{k=0..n} 1/binomial(n,k)^3.
6
1, 2, 17, 56, 1759, 1009, 86831, 2322304, 85922, 1144667, 16019198113, 123357293, 21312406359367, 17061774340031, 27741170437991, 182851619022848, 167169857863289, 9857517443932187, 8844183281912559671, 197147246106875452361, 681198614358931646209
OFFSET
0,2
LINKS
FORMULA
a(n) = numerator( Sum_{k=0..n} 1/binomial(n,k)^3 ).
EXAMPLE
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
MATHEMATICA
Numerator[Table[Sum[1/Binomial[n, k]^3, {k, 0, n}], {n, 0, 20}]] (* Harvey P. Dale, Sep 28 2012 *)
PROG
(Magma) [Numerator( (&+[1/Binomial(n, k)^3: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
(SageMath) [numerator(sum(1/binomial(n, k)^3 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
(PARI) a(n) = numerator(sum(k=0, n, 1/binomial(n, k)^3)); \\ Michel Marcus, Jun 24 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 25 2004
STATUS
approved