login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125200
a(n) = n*(4*n^2 + n - 1)/2.
3
2, 17, 57, 134, 260, 447, 707, 1052, 1494, 2045, 2717, 3522, 4472, 5579, 6855, 8312, 9962, 11817, 13889, 16190, 18732, 21527, 24587, 27924, 31550, 35477, 39717, 44282, 49184, 54435, 60047, 66032, 72402, 79169, 86345, 93942, 101972, 110447, 119379
OFFSET
1,1
COMMENTS
a(n) = Sum_{k=1..n} (4*n*k - n - k), sums of rows of the triangle in A125199.
A003415(A003415(a(n))) = 2*A016969(n-1).
FORMULA
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - R. J. Mathar, Feb 12 2010
G.f.: x*(2+9*x+x^2)/(x-1)^4. - R. J. Mathar, Feb 12 2010
a(n) = Sum_{i=1..n} A033568(i). - Bruno Berselli, Jul 22 2013
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {2, 17, 57, 134}, 40] (* Harvey P. Dale, Feb 05 2013 *)
PROG
(Magma) [n*(4*n^2 +n-1)div 2:n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 24 2006
EXTENSIONS
Definition corrected by Vincenzo Librandi, Dec 27 2010
STATUS
approved