login
A125609
Smallest prime p such that 3^n divides p^2 - 1.
22
2, 17, 53, 163, 487, 1459, 4373, 13121, 39367, 472391, 1062881, 1062881, 19131877, 19131877, 57395627, 86093443, 258280327, 3874204891, 6973568801, 6973568801, 188286357653, 188286357653, 188286357653, 4518872583697, 15251194969973
OFFSET
1,1
COMMENTS
Smallest prime of the form k*3^n-1 or k*3^n+1. - Robert Israel, Oct 27 2019
LINKS
Martin Fuller, PARI program
W. Keller and J. Richstein, Fermat quotients that are divisible by p.
MAPLE
f:= proc(n) local k;
for k from 1 do
if isprime(k*3^n-1) then return k*3^n-1
elif isprime(k*3^n+1) then return k*3^n+1
fi
od
end proc:
map(f, [$1..30]); # Robert Israel, Oct 27 2019
MATHEMATICA
f[n_] := Module[{k}, For[k = 1, True, k++, If[PrimeQ[k*3^n-1], Return[k*3^n-1], If[PrimeQ[k*3^n+1], Return[k*3^n+1]]]]];
Array[f, 30] (* Jean-François Alcover, Jun 04 2020, after Maple *)
PROG
For PARI program see link.
CROSSREFS
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
Sequence in context: A192345 A212836 A338564 * A377699 A100518 A367032
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 28 2006
EXTENSIONS
Corrected and extended by Ryan Propper, Jan 01 2007
More terms from Martin Fuller, Jan 11 2007
STATUS
approved