OFFSET
1,1
COMMENTS
Smallest prime of the form k*3^n-1 or k*3^n+1. - Robert Israel, Oct 27 2019
LINKS
Robert Israel, Table of n, a(n) for n = 1..2088
Martin Fuller, PARI program
W. Keller and J. Richstein, Fermat quotients that are divisible by p.
MAPLE
f:= proc(n) local k;
for k from 1 do
if isprime(k*3^n-1) then return k*3^n-1
elif isprime(k*3^n+1) then return k*3^n+1
fi
od
end proc:
map(f, [$1..30]); # Robert Israel, Oct 27 2019
MATHEMATICA
f[n_] := Module[{k}, For[k = 1, True, k++, If[PrimeQ[k*3^n-1], Return[k*3^n-1], If[PrimeQ[k*3^n+1], Return[k*3^n+1]]]]];
Array[f, 30] (* Jean-François Alcover, Jun 04 2020, after Maple *)
PROG
For PARI program see link.
CROSSREFS
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 28 2006
EXTENSIONS
Corrected and extended by Ryan Propper, Jan 01 2007
More terms from Martin Fuller, Jan 11 2007
STATUS
approved