OFFSET
1,2
COMMENTS
Row sums = A027973: (1, 4, 9, 21, 46, 99, 209, ...).
EXAMPLE
First few rows of the triangle:
1;
3, 1;
4, 4, 1;
7, 8, 5, 1;
11, 15, 13, 6, 1;
18, 26, 28, 19, 7, 1;
...
(6,3) = 28 = 13 + 15 = (5,3) + (5,2).
MAPLE
L[1]:=1: L[2]:=3: for n from 3 to 12 do L[n]:=L[n-1]+L[n-2] od: T:=proc(n, k) if k=1 then L[n] elif n=1 then 0 else T(n-1, k)+T(n-1, k-1) fi end: for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 01 2007
A000204 := proc(n) if n =1 then RETURN(1) ; elif n = 2 then RETURN(3) ; else RETURN( A000204(n-1)+A000204(n-2)) ; fi ; end ; A125608 := proc(nmax) local a, row, col, anext ; a := [1] ; row := 1 ; while nops(a) < nmax do row := row+1 ; a := [op(a), A000204(row)] ; for col from 2 to row-1 do anext := op(-row, a)+op(-row+1, a) ; a := [op(a), anext] ; od ; a := [op(a), 1] ; od ; RETURN(a) ; end ; A125608(80) ; # R. J. Mathar, Jan 07 2007
MATHEMATICA
T[n_, 1] := LucasL[n];
T[n_, k_] /; 2 <= k <= n := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
T[_, _] = 0;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 19 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 27 2006
EXTENSIONS
More terms from Emeric Deutsch, Jan 01 2007
More terms from R. J. Mathar, Jan 07 2007
STATUS
approved