login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129246
Iterated sum of divisors array A[k,n] = k-th iterate of sigma(n), by antidiagonals.
6
1, 1, 3, 1, 4, 4, 1, 7, 7, 7, 1, 8, 8, 8, 6, 1, 15, 15, 15, 12, 12, 1, 24, 24, 24, 28, 28, 8, 1, 60, 60, 60, 56, 56, 15, 15, 1, 168, 168, 168, 120, 120, 24, 24, 13, 1, 480, 480, 480, 360, 360, 60, 60, 14, 18, 1, 1512, 1512, 1512, 1170, 1170, 168, 168, 24, 39, 12, 1, 4800, 4800
OFFSET
1,3
FORMULA
A[k,n] = sigma^k(n), where sigma^k denotes functional iteration.
EXAMPLE
Array begins:
k / sigma(...sigma(n)..) nested k deep.
1.|.1...3...4....7....6....12....8....15...13....18...
2.|.1...4...7....8...12....28...15....24...14....39...
3.|.1...7...8...15...28....56...24....60...24....56...
4.|.1...8..15...24...56...120...60...168...60...120...
5.|.1..15..24...60..120...360..168...480..168...360...
6.|.1..24..60..168..360..1170..480..1512..480..1170...
7.|.1..60.168..480.1170..3276.1512..4800.1512..3276...
8.|.1.168.480.1512.3276.10192.4800.15748.4800.10192...
MAPLE
A129246 := proc(k, n) option remember ; if k= 1 then numtheory[sigma](n); else A129246(k-1, numtheory[sigma](n)) ; fi ; end: for d from 1 to 13 do for n from 1 to d do printf("%d, ", A129246(d+1-n, n)) ; od: od: # R. J. Mathar, Oct 09 2007
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 1, DivisorSigma[1, k], DivisorSigma[1, T[n-1, k]]];
Table[T[d-k+1, k], {d, 1, 13}, {k, 1, d}] // Flatten (* Jean-François Alcover, Sep 23 2022, after R. J. Mathar, except that T(n, k) replaces the unusual A(k, n) *)
CROSSREFS
Cf. A000203 (row 1), A051027 (row 2), A066971 (row 3).
Cf. A000012 (column 1), A007497 (column 2), A090896 (main diagonal).
Sequence in context: A246340 A246354 A286625 * A125608 A182001 A099813
KEYWORD
easy,nonn,tabl
AUTHOR
Jonathan Vos Post, May 27 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2007
STATUS
approved