login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007497
a(1) = 2, a(n) = sigma(a(n-1)).
(Formerly M0581)
21
2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, 122880, 393192, 1098240, 4124736, 15605760, 50328576, 149873152, 371226240, 1710858240, 7926750720, 33463001088, 109760857440, 384120963072, 1468475386560, 7157589626880, 33151875434496
OFFSET
1,1
COMMENTS
Note that a(32) = 125038913126400 = 11182080^2. - Zak Seidov, Aug 29 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1500 (first 200 terms from T. D. Noe)
G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 91-100.
Graeme L. Cohen, Herman J. J. te Riele, Iterating the Sum-of-Divisors Function, Experimental Mathematics, Vol. 5 (1996), No. 2, pp. 91-100.
R. G. Wilson, V, Notes, n.d.
FORMULA
Conjecture: (1/2)*log(n) < a(n+1)/a(n) < 2*log(n). - Benoit Cloitre, May 08 2003
Conjecture: a(n) == 0 mod 9 for n > 34. - Ivan N. Ianakiev, Mar 27 2014
Checked up to n = 1000. Similar statements hold for other small primes. For example, a(n) seems to be divisible by 2^22 * 3^5 * 5 * 7 = 35672555520 for all n > 99. - Charles R Greathouse IV, Mar 27 2014
MAPLE
A007497 := proc(n) options remember; if n <= 0 then RETURN(2) else numtheory[sigma](procname(n-1)); fi; end proc:
MATHEMATICA
a[1] = 2; a[n_] := a[n] = DivisorSigma[1, a[n-1]]; Table[a[n], {n, 30}]
NestList[ DivisorSigma[1, # ] &, 2, 27] (* Robert G. Wilson v, Oct 08 2010 *)
PROG
(Haskell)
a007497 n = a007497_list !! (n-1)
a007497_list = iterate a000203 2 -- Reinhard Zumkeller, Feb 27 2014
(PARI) normalize(M)={
my(P=Set(M[, 1]), f=concat(Mat(P), vector(#P))~);
for(i=1, #M~,
f[setsearch(P, M[i, 1]), 2] += M[i, 2]
);
f
};
addhelp(normalize, "normalize(M): Given a factorization matrix M, combine all like factors and order.");
sf(f)=my(v=vector(#f~, i, (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1)), g=factor(v[1])~); for(i=2, #v, g=concat(g, factor(v[i])~)); normalize(g~)
v=vector(100); v[1]=2; f=factor(2); for(i=2, #v, print1(i" "); v[i]= factorback(f=sf(f))); v \\ Charles R Greathouse IV, Mar 27 2014
(Python)
from itertools import accumulate, repeat # requires Python 3.2 or higher
from sympy import divisor_sigma
A007497_list = list(accumulate(repeat(2, 100), lambda x, _: divisor_sigma(x)))
# Chai Wah Wu, May 02 2015
CROSSREFS
Cf. A000203, A175877 (positions of odd terms), A175878 (odd terms).
See also the similarly defined A051572 which has a(1) = 5 instead.
See also A257348.
Sequence in context: A227007 A370858 A126850 * A126882 A333801 A239973
KEYWORD
nonn,easy,nice
EXTENSIONS
Changed the cross-reference from the tau to the sigma-function - R. J. Mathar, Feb 17 2010
STATUS
approved