login
A125612
a(n) is the smallest prime p such that 11^n divides p^10 - 1.
22
2, 3, 2663, 45989, 275393, 2120879, 28723679, 174625993, 4715895383, 24262286441, 1194631280321, 3143820659087, 138090848575723, 488581592070877, 6266190914259137, 367597838908577287, 10866698414795559631, 19697814061539637951, 19697814061539637951, 3824465353837845574717, 14852046860008834240157
OFFSET
1,1
COMMENTS
a(n) is the smallest 10th root of unity (mod 11^n) that is prime. - Robert Israel, Jan 14 2024
LINKS
MAPLE
f:= proc(n) local R, r, i;
R:= sort(map(rhs@op, [msolve(x^10=1, 11^n)]));
for i from 0 do
for r in R do
if isprime(11^n * i + r) then return 11^n * i + r fi
od od;
end proc:
map(f, [$1..20]); # Robert Israel, Jan 14 2024
MATHEMATICA
spp[n_]:=Module[{p=2, c=11^n}, While[PowerMod[p, 10, c]!=1, p=NextPrime[p]]; p]; Array[spp, 16] (* Harvey P. Dale, Aug 08 2019 *)
PROG
(PARI) \\ See A125609
(Python)
from itertools import count
from sympy import nthroot_mod, isprime
def A125612(n):
m = 11**n
r = sorted(nthroot_mod(1, 10, m, all_roots=True))
for i in count(0, m):
for p in r:
if isprime(i+p): return i+p # Chai Wah Wu, May 02 2024
CROSSREFS
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
Sequence in context: A137321 A066848 A324310 * A185156 A235935 A182383
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 28 2006
EXTENSIONS
More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007
More terms from Robert Israel, Jan 14 2024
STATUS
approved