login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143549 G.f. satisfies: A(x) = 1 + x*A(x)^4*A(-x). 2
1, 1, 3, 17, 85, 598, 3473, 26668, 166429, 1340079, 8724438, 72374714, 484498327, 4102336176, 28009706440, 240729330116, 1668007246157, 14499527706129, 101618389067849, 891275643857227, 6303425058175018, 55686806813191060 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Robert Israel, Table of n, a(n) for n = 0..600

FORMULA

G.f. satisfies: A(x) + A(-x) = 1 + [A(x)*A(-x)] + x^2*[A(x)*A(-x)]^5.

G.f. satisfies: -x^3*A(x)^15+x^2*A(x)^12-x^2*A(x)^11+A(x)^4-4*A(x)^3+6*A(x)^2-4*A(x)+1 = 0. - Robert Israel, Jul 10 2017

EXAMPLE

G.f. A(x) = 1 + x + 3*x^2 + 17*x^3 + 85*x^4 + 598*x^5 + 3473*x^6 +...

Related expansions:

A(x)^4 = 1 + 4*x + 18*x^2 + 108*x^3 + 635*x^4 + 4348*x^5 + 28336*x^6 +...

A(x)*A(-x) = 1 + 5*x^2 + 145*x^4 + 5971*x^6 + 287253*x^8 +...

[A(x)*A(-x)]^5 = 1 + 25*x^2 + 975*x^4 + 45605*x^6 + 2355490*x^8 +...

MAPLE

S:= series(RootOf(_Z^15*x^3-_Z^12*x^2+_Z^11*x^2-_Z^4+4*_Z^3-6*_Z^2+4*_Z-1), x, 31):

seq(coeff(S, x, i), i=0..30); # Robert Israel, Jul 10 2017

MATHEMATICA

nmax = 21; sol = {a[0] -> 1};

Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x*A[x]^4*A[-x]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];

sol /. Rule -> Set;

a /@ Range[0, nmax] (* Jean-Fran├žois Alcover, Nov 01 2019 *)

PROG

(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, 2*n, A=1+x*A^4*subst(A^1, x, -x)); polcoeff(A, n)}

CROSSREFS

Cf. A143338, A143550, A143551, A143552, A143553, A143554.

Sequence in context: A037787 A037668 A119884 * A037794 A203851 A198766

Adjacent sequences:  A143546 A143547 A143548 * A143550 A143551 A143552

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:07 EDT 2021. Contains 343995 sequences. (Running on oeis4.)