login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143546
G.f. satisfies: A(x) = 1 + x*A(x)^3*A(-x)^2.
17
1, 1, 1, 3, 5, 18, 35, 136, 285, 1155, 2530, 10530, 23751, 100688, 231880, 996336, 2330445, 10116873, 23950355, 104819165, 250543370, 1103722620, 2658968130, 11777187240, 28558343775, 127067830773, 309831575760, 1383914371728, 3390416787880, 15194457001440
OFFSET
0,4
COMMENTS
Number of achiral polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 23 2024
Number of achiral noncrossing partitions composed of n blocks of size 5. - Andrew Howroyd, Feb 08 2024
LINKS
Michel Bousquet and Cédric Lamathe, On symmetric structures of order two, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176. See Table 1. - From N. J. A. Sloane, Jul 12 2011
Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
FORMULA
G.f.: A(x) = G(x^2) + x*G(x^2)^3 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(2n) = binomial(5*n,n)/(4*n+1); a(2n+1) = binomial(5*n+2,n)*3/(4*n+3).
From Robert A. Russell, Jan 23 2024: (Start)
a(n+2)/a(n) ~ 3125/256. a(2m+1)/a(2m) ~ 75/16; a(2m)/a(2m-1) ~ 125/48.
a(n) = 2*A004127(n) - A221184(n-1) = A221184(n-1) - 2*A369473(n) = A004127(n) - A369473(n). (End)
a(2m) = A002294(m) ~ (5^5/4^4)^m*sqrt(5/(2*Pi*(4*m)^3)). - Robert A. Russell, Jul 15 2024
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 18*x^5 + 35*x^6 + 136*x^7 + ...
A(x) = 1 + x*A(x)^3*A(-x)^2 where
A(x)^3 = 1 + 3x + 6x^2 + 16x^3 + 39x^4 + 114x^5 + 304x^6 + 936x^7 + ...
A(-x)^2 = 1 - 2x + 3x^2 - 8x^3 + 17x^4 - 52x^5 + 125x^6 - 408x^7 + ...
Also, A(x) = G(x^2) + x*G(x^2)^3 where
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ...
G(x)^3 = 1 + 3*x + 18*x^2 + 136*x^3 + 1155*x^4 + 10530*x^5 + ...
MATHEMATICA
terms = 28;
A[_] = 1; Do[A[x_] = 1 + x A[x]^3 A[-x]^2 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
p=6; Table[If[EvenQ[n], Binomial[(p-1)n/2, n/2]/((p-2)n/2+1), If[OddQ[p], (p-1)Binomial[(p-1)n/2-1, (n-1)/2]/((p-2)n+1), p Binomial[(p-1)n/2-1/2, (n-1)/2]/((p-2)n+2)]], {n, 0, 35}] (* Robert A. Russell, Jan 23 2024 *)
PROG
(PARI) {a(n)=my(A=1+O(x^(n+1))); for(i=0, n, A=1+x*A^3*subst(A^2, x, -x)); polcoef(A, n)}
(PARI) {a(n)=my(m=n\2, p=2*(n%2)+1); binomial(5*m+p-1, m)*p/(4*m+p)}
CROSSREFS
Column k=5 of A369929 and k=6 of A370062.
Cf. A118970.
Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A369473 (chiral), A002294 (rooted), A047749 {4,oo}, A369472 {5,oo}.
Sequence in context: A191717 A373405 A136131 * A069066 A011964 A123793
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Aug 23 2008
STATUS
approved