login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143543
Triangle read by rows: T(n,k) = number of labeled graphs on n nodes with k connected components, 1<=k<=n.
31
1, 1, 1, 4, 3, 1, 38, 19, 6, 1, 728, 230, 55, 10, 1, 26704, 5098, 825, 125, 15, 1, 1866256, 207536, 20818, 2275, 245, 21, 1, 251548592, 15891372, 925036, 64673, 5320, 434, 28, 1, 66296291072, 2343580752, 76321756, 3102204, 169113, 11088, 714, 36, 1
OFFSET
1,4
COMMENTS
The Bell transform of A001187(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016
LINKS
Alois P. Heinz, Rows n = 1..82, flattened (first 25 rows from Marko Riedel)
Marko Riedel et al., Proof of recurrence relation.
FORMULA
SUM[n,k=0..oo] T(n,k) * x^n * y^k / n! = exp( y*( F(x) - 1 ) ) = ( SUM[n=0..oo] 2^binomial(n, 2)*x^n/n! )^y, where F(x) is e.g.f. of A001187.
T(n,k) = Sum_{q=0..n-1} C(n-1, q) T(q, k-1) 2^C(n-q,2) - Sum_{q=0..n-2} C(n-1, q) T(q+1, k) 2^C(n-1-q, 2) where T(0,0) = 1 and T(0,k) = 0 and T(n,0) = 0. - Marko Riedel, Feb 04 2019
Sum_{k=1..n} k * T(n,k) = A125207(n) - Alois P. Heinz, Feb 02 2024
EXAMPLE
The triangle T(n,k) starts as:
n=1: 1;
n=2: 1, 1;
n=3: 4, 3, 1;
n=4: 38, 19, 6, 1;
n=5: 728, 230, 55, 10, 1;
n=6: 26704, 5098, 825, 125, 15, 1;
...
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
binomial(n, k)*2^((n-k)*(n-k-1)/2)*g(k)*k, k=1..n-1)/n)
end:
b:= proc(n) option remember; `if`(n=0, 1, add(expand(
b(n-j)*binomial(n-1, j-1)*g(j)*x), j=1..n))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Feb 02 2024
MATHEMATICA
a= Sum[2^Binomial[n, 2] x^n/n!, {n, 0, 10}];
Rest[Transpose[Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid (* Geoffrey Critzer, Mar 15 2011 *)
PROG
(Sage) # uses[bell_matrix from A264428, A001187]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: A001187(n+1), 9) # Peter Luschny, Jan 17 2016
CROSSREFS
Cf. A001187 (first column), A006125 (row sums), A106240 (unlabeled variant).
Cf. A125207.
T(2n,n) gives A369827.
Sequence in context: A203412 A217756 A154960 * A176863 A349989 A067017
KEYWORD
nonn,tabl
AUTHOR
Max Alekseyev, Aug 23 2008
STATUS
approved