login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = number of labeled graphs on n nodes with k connected components, 1<=k<=n.
31

%I #39 Feb 02 2024 18:46:23

%S 1,1,1,4,3,1,38,19,6,1,728,230,55,10,1,26704,5098,825,125,15,1,

%T 1866256,207536,20818,2275,245,21,1,251548592,15891372,925036,64673,

%U 5320,434,28,1,66296291072,2343580752,76321756,3102204,169113,11088,714,36,1

%N Triangle read by rows: T(n,k) = number of labeled graphs on n nodes with k connected components, 1<=k<=n.

%C The Bell transform of A001187(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 17 2016

%H Alois P. Heinz, <a href="/A143543/b143543.txt">Rows n = 1..82, flattened</a> (first 25 rows from Marko Riedel)

%H Marko Riedel, <a href="/A143543/a143543.maple.txt">Maple implementation of memoized recurrence.</a>

%H Marko Riedel et al., <a href="https://math.stackexchange.com/questions/3094635/">Proof of recurrence relation.</a>

%F SUM[n,k=0..oo] T(n,k) * x^n * y^k / n! = exp( y*( F(x) - 1 ) ) = ( SUM[n=0..oo] 2^binomial(n, 2)*x^n/n! )^y, where F(x) is e.g.f. of A001187.

%F T(n,k) = Sum_{q=0..n-1} C(n-1, q) T(q, k-1) 2^C(n-q,2) - Sum_{q=0..n-2} C(n-1, q) T(q+1, k) 2^C(n-1-q, 2) where T(0,0) = 1 and T(0,k) = 0 and T(n,0) = 0. - _Marko Riedel_, Feb 04 2019

%F Sum_{k=1..n} k * T(n,k) = A125207(n) - _Alois P. Heinz_, Feb 02 2024

%e The triangle T(n,k) starts as:

%e n=1: 1;

%e n=2: 1, 1;

%e n=3: 4, 3, 1;

%e n=4: 38, 19, 6, 1;

%e n=5: 728, 230, 55, 10, 1;

%e n=6: 26704, 5098, 825, 125, 15, 1;

%e ...

%p g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(

%p binomial(n, k)*2^((n-k)*(n-k-1)/2)*g(k)*k, k=1..n-1)/n)

%p end:

%p b:= proc(n) option remember; `if`(n=0, 1, add(expand(

%p b(n-j)*binomial(n-1, j-1)*g(j)*x), j=1..n))

%p end:

%p T:= (n, k)-> coeff(b(n$2), x, k):

%p seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Feb 02 2024

%t a= Sum[2^Binomial[n,2] x^n/n!,{n,0,10}];

%t Rest[Transpose[Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid (* _Geoffrey Critzer_, Mar 15 2011 *)

%o (Sage) # uses[bell_matrix from A264428, A001187]

%o # Adds a column 1,0,0,0, ... at the left side of the triangle.

%o bell_matrix(lambda n: A001187(n+1), 9) # _Peter Luschny_, Jan 17 2016

%Y Cf. A001187 (first column), A006125 (row sums), A106240 (unlabeled variant).

%Y Cf. A125207.

%Y T(2n,n) gives A369827.

%K nonn,tabl

%O 1,4

%A _Max Alekseyev_, Aug 23 2008