The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143547 G.f. satisfies: A(x) = 1 + x*A(x)^4*A(-x)^3. 12
 1, 1, 1, 4, 7, 34, 70, 368, 819, 4495, 10472, 59052, 141778, 814506, 1997688, 11633440, 28989675, 170574723, 430321633, 2552698720, 6503352856, 38832808586, 99726673130, 598724403680, 1547847846090, 9335085772194, 24269405074740, 146936230074004, 383846168712104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of achiral noncrossing partitions composed of n blocks of size 7. - Andrew Howroyd, Feb 08 2024 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..500 Michel Bousquet and Cédric Lamathe, On symmetric structures of order two, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176, See Table 1. - From N. J. A. Sloane, Jul 12 2011 FORMULA G.f.: A(x) = G(x^2) + x*G(x^2)^4 where G(x^2) = A(x)*A(-x) and G(x) = 1 + x*G(x)^7 is the g.f. of A002296. a(2n) = binomial(7*n,n)/(6*n+1); a(2n+1) = binomial(7*n+3,n)*4/(6*n+4). G.f. satisfies: A(x)*A(-x) = (A(x) + A(-x))/2. EXAMPLE G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 34*x^5 + 70*x^6 + 368*x^7 + ... Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then A(x)*A(-x) = G(x^2) and A(x) = G(x^2) + x*G(x^2)^4 where G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 + ... G(x)^4 = 1 + 4*x + 34*x^2 + 368*x^3 + 4495*x^4 + 59052*x^5 + ... form the bisections of A(x). By definition, A(x) = 1 + x*A(x)^4*A(-x)^3 where A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 95*x^4 + 332*x^5 + 1074*x^6 + ... A(-x)^3 = 1 - 3*x + 6*x^2 - 19*x^3 + 51*x^4 - 183*x^5 + 550*x^6 -+ ... MATHEMATICA terms = 26; A[_] = 1; Do[A[x_] = 1 + x A[x]^4 A[-x]^3 + O[x]^terms // Normal, {terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *) PROG (PARI) {a(n)=my(A=1+O(x^(n+1))); for(i=0, n, A=1+x*A^4*subst(A^3, x, -x)); polcoef(A, n)} (PARI) {a(n)=my(m=n\2, p=3*(n%2)+1); binomial(7*m+p-1, m)*p/(6*m+p)} CROSSREFS Column k=7 of A369929 and k=8 of A370062. Cf. A002296 (bisection), A143546. Sequence in context: A243863 A153062 A237424 * A149090 A103059 A123809 Adjacent sequences: A143544 A143545 A143546 * A143548 A143549 A143550 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 23 2008 EXTENSIONS a(26) onwards from Andrew Howroyd, Feb 08 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)