The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243863 G.f. satisfies: A(x) = 1/(1 - x*A(-x)^2). 4
 1, 1, -1, -4, 7, 33, -68, -344, 767, 4035, -9425, -50832, 122436, 671804, -1653776, -9189488, 22992655, 129001239, -326863667, -1847900500, 4729547023, 26903463697, -69424933968, -396930961632, 1031309398852, 5921685690388, -15474833826028, -89179284390112, 234201961398776, 1353916407418200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Compare to: G(x) = 1/(1 - x*G(x)^2) where G(x) = 1 + x*G(x)^3. Compare to: G(x) = 1/(1 - x*G(-x)) where G(x) = 1 + x*C(-x^2) and C(x) = 1 + x*C(x)^2. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..440 FORMULA G.f. satisfies: x*(A(x) + A(-x))^3 - x*(A(x) + A(-x))^2 = 2*(A(x) - A(-x)). From Vaclav Kotesovec, Jun 15 2014: (Start) G.f. satisfies: (1-x)*y - 2*x*y^2 + 2*x*y^3 - x^2*y^4 + x^2*y^5 = 1, where y=A(x). Recurrence: 64*(n-1)*n*(2*n-1)*(2*n+1)*(97344*n^7 - 1687296*n^6 + 12307620*n^5 - 48939592*n^4 + 114477342*n^3 - 157378523*n^2 + 117615351*n - 36821682)*a(n) =  -48*(n-1)*(2*n-1)*(259584*n^7 - 4255264*n^6 + 28913612*n^5 - 105040520*n^4 + 218720756*n^3 - 257978161*n^2 + 156355143*n - 36051210)*a(n-1) - 12*(35043840*n^11 - 747601920*n^10 + 7046084448*n^9 - 38652188640*n^8 + 136786604012*n^7 - 326872151500*n^6 + 535977209166*n^5 - 599646116255*n^4 + 445036801288*n^3 - 206251878585*n^2 + 52769481426*n - 5487093360)*a(n-2) + 12*(n-3)*(1460160*n^8 - 21131136*n^7 + 128186214*n^6 - 422759974*n^5 + 821575770*n^4 - 951902899*n^3 + 631809561*n^2 - 214667176*n + 27671400)*a(n-3) + 3*(n-4)*(n-3)*(3*n-11)*(3*n-10)*(97344*n^7 - 1005888*n^6 + 4228068*n^5 - 9303892*n^4 + 11456294*n^3 - 7773065*n^2 + 2627695*n - 329436)*a(n-4). a(n) ~ sqrt(1+sqrt(3)) * (3*(45+26*sqrt(3)))^(n/2) * (cos(Pi*n/2) + sqrt(1+2/sqrt(3))*sin(Pi*n/2)) / (sqrt(Pi) * n^(3/2) * 2^(2*n+2)). (End) a(n) = Sum_{k=0..n} (-1)^k * A278881(n,k) for n>=0. - Paul D. Hanna, Dec 01 2016 a(n) = Sum_{k=0..n-1} (-1)^k * (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) for n>0 with a(0)=1. - Paul D. Hanna, Dec 15 2016 EXAMPLE G.f.: A(x) = 1 + x - x^2 - 4*x^3 + 7*x^4 + 33*x^5 - 68*x^6 - 344*x^7 + 767*x^8 + 4035*x^9 - 9425*x^10 - 50832*x^11 + 122436*x^12 +... where A(x)^2 = 1 + 2*x - x^2 - 10*x^3 + 7*x^4 + 88*x^5 - 68*x^6 - 946*x^7 + 767*x^8 + 11298*x^9 - 9425*x^10 - 144024*x^11 + 122436*x^12 +... 1/A(x) = 1 - x + 2*x^2 + x^3 - 10*x^4 - 7*x^5 + 88*x^6 + 68*x^7 - 946*x^8 - 767*x^9 + 11298*x^10 + 9425*x^11 - 144024*x^12 +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/((1-x*subst(A^2, x, -x +x*O(x^n))))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k* (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!)))} for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 15 2016 CROSSREFS Cf. A278745, A278881, A278882. Sequence in context: A271676 A149089 A004031 * A153062 A237424 A143547 Adjacent sequences:  A243860 A243861 A243862 * A243864 A243865 A243866 KEYWORD sign AUTHOR Paul D. Hanna, Jun 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 12:38 EDT 2021. Contains 343650 sequences. (Running on oeis4.)