login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278881 Triangle where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n. 5
1, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 20, 30, 4, 0, 1, 40, 147, 80, 5, 0, 1, 70, 504, 672, 175, 6, 0, 1, 112, 1386, 3600, 2310, 336, 7, 0, 1, 168, 3276, 14520, 18150, 6552, 588, 8, 0, 1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0, 1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0, 1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0, 1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1080 for rows 0..45 of the flattened form of this triangle.

FORMULA

G.f. C = C(x,m), and related functions S = S(x,m) and D = D(x,m) satisfy:

(1.a) S = x*C*D.

(1.b) C = 1 + x*S*D.

(1.c) D = 1 + m*x*S*C.

...

(2.a) C = C^2 - S^2.

(2.b) D = D^2 - m*S^2.

(2.c) C = (1 + sqrt(1 + 4*S^2))/2.

(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.

...

(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.

(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).

(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).

(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).

(3.e) C = 1/(1 - x^2*D^2).

(3.f) D = 1/(1 - m*x^2*C^2).

...

(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.

(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.

(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.

...

(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).

Logarithmic derivatives.

(6.a) C'/C = 2*S*S' / (C^2 + S^2).

(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).

...

T(n,k) = (k+1) * A082680(n+1,k+1) for n>=0 with T(0,0) = 1 and T(n,n) = 1 for n>0. - Paul D. Hanna, Dec 11 2016

T(n,k) = (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) for n>k>0 with T(n,0) = 1 and T(n,n) = 0 for n>0. - Paul D. Hanna, Dec 11 2016

Row sums yield A001764(n) = binomial(3*n,n)/(2*n+1).

Central terms: T(2*n,n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).

Sum_{k=0..n} 2^k * T(n,k) = A258314(n-1) for n>=0.

Sum_{k=0..n} (-1)^k * T(n,k) = A243863(n) for n>=0.

EXAMPLE

This triangle of coefficients of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n, begins:

1;

1, 0;

1, 2, 0;

1, 8, 3, 0;

1, 20, 30, 4, 0;

1, 40, 147, 80, 5, 0;

1, 70, 504, 672, 175, 6, 0;

1, 112, 1386, 3600, 2310, 336, 7, 0;

1, 168, 3276, 14520, 18150, 6552, 588, 8, 0;

1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0;

1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0;

1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0;

1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0; ...

Generating function:

C(x,m) = 1 + x^2 + (1 + 2*m)*x^4 + (1 + 8*m + 3*m^2)*x^6 +

(1 + 20*m + 30*m^2 + 4*m^3)*x^8 +

(1 + 40*m + 147*m^2 + 80*m^3 + 5*m^4)*x^10 +

(1 + 70*m + 504*m^2 + 672*m^3 + 175*m^4 + 6*m^5)*x^12 +

(1 + 112*m + 1386*m^2 + 3600*m^3 + 2310*m^4 + 336*m^5 + 7*m^6)*x^14 +

(1 + 168*m + 3276*m^2 + 14520*m^3 + 18150*m^4 + 6552*m^5 + 588*m^6 + 8*m^7)*x^16 +...

where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy

S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,

such that

C = C^2 - S^2,

D = D^2 - m*S^2.

The square of the g.f. begins:

C(x,m)^2 = 1 + 2*x^2 + (4*m + 3)*x^4 + (6*m^2 + 20*m + 4)*x^6 +

(8*m^3 + 70*m^2 + 60*m + 5)*x^8 +

(10*m^4 + 180*m^3 + 392*m^2 + 140*m + 6)*x^10 +

(12*m^5 + 385*m^4 + 1680*m^3 + 1512*m^2 + 280*m + 7)*x^12 +

(14*m^6 + 728*m^5 + 5544*m^4 + 9900*m^3 + 4620*m^2 + 504*m + 8)*x^14 +

(16*m^7 + 1260*m^6 + 15288*m^5 + 47190*m^4 + 43560*m^3 + 12012*m^2 + 840*m + 9)*x^16 +

(18*m^8 + 2040*m^7 + 36960*m^6 + 180180*m^5 + 286286*m^4 + 156156*m^3 + 27720*m^2 + 1320*m + 10)*x^18 +...

PROG

(PARI) {T(n, k) = my(S=x, C=1, D=1); for(i=0, 2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C; ); polcoeff(polcoeff(C, 2*n, x), k, m)}

for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print(""))

(PARI) /* Explicit formula for T(n, k) */

{T(n, k) = if(k==0, 1, if(n==k, 0, (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) ))}

for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016

CROSSREFS

Cf. A278880 (S(x,m)), A278882 (D(x,m)), A278884 (central terms).

Cf. A001764 (row sums), A000108, A258314 (C(x,m) at m=2), A243863.

Sequence in context: A108998 A309993 A248673 * A201637 A055141 A055140

Adjacent sequences:  A278878 A278879 A278880 * A278882 A278883 A278884

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 29 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 03:48 EST 2019. Contains 329990 sequences. (Running on oeis4.)